Fire incidence along an elevation gradient in the mountains of central Argentina

JUAN P. ARGÁÑARAZ1,2, ANA M. CINGOLANI; LAURA M. BELLIS1 & MELISA A. GIORGIS1
1 Instituto de Altos Estudios Espaciales “Mario Gulich” (CONAE-UINC), CONICET. Falda del Cañete, Argentina. 2 Instituto Multidisciplinario de Biodiversidad Vegetal, CONICET-Universidad Nacional de Córdoba. Córdoba, Argentina.

Abstract. In mountain ecosystems, vegetation distribution along elevation has been traditionally interpreted in terms of the decreasing temperature from base to top, but wildfires may co-vary with the elevation gradient, also playing an important role. In the mountains of central Argentina (500-2800 m a.s.l) wildfires are one of the main disturbances, which may have an important role in shaping vegetation dynamics along elevation. However, to date, no study described the fire pattern along the elevation gradient. We compared fire incidence among five elevation intervals using an 18-year spatially explicit fire database derived from remote sensing. For each interval, we discarded unburnable areas and calculated fire incidence per year as the percentage of burned area. Fire incidence showed a hump-shaped pattern along the elevation gradient. The highest fire incidence occurred at intermediate elevations, in the 1301-1700 m and 901-1300 m intervals, with averages of 3.2 and 2.7% of the area being burned annually, respectively. The lowest fire incidence occurred at the lowest interval (500-900 m), with 1.5% being burned annually on average. The greater fire incidence observed at intermediate elevations is consistent with a sharp increase in the cover of grasslands above 900 m a.s.l., with an associated reduction in forest occupation. Towards higher elevations, the lower fire incidence is consistent with the presence of topographic breaks, greater proportion of unburnable surfaces that work as firebreaks and moister conditions. The greater fire incidence observed at intermediate elevations may be limiting forest expansion in those areas. At higher elevations the low forest cover may be explained by a combination of fire and livestock pressure. Our study is the first to show how fire incidence varies along the complete elevation gradient, bringing an important tool to understand vegetation distribution and plan future conservation and restoration strategies.

[Keywords: fire-vegetation patterns, fire frequency, forest, grassland, landscape ecology, remote sensing, sierras of Córdoba, spatial analyses, treeline]

Resumen. Incidencia del fuego en un gradiente altitudinal de las sierras del centro de la Argentina. En los ecosistemas de montaña, la distribución de la vegetación a lo largo del gradiente altitudinal fue tradicionalmente interpretada en términos de la temperatura decreciente desde la base hacia arriba; pero los fuegos pueden co-varyar con el gradiente de altitud, también cumpliendo un papel importante. En las montañas del centro de la Argentina (500-2800 m s. n. m.), los fuegos son uno de los principales disturbios que pueden cumplir una función importante en modular la dinámica de la vegetación a lo largo de la altitud. Sin embargo, hasta ahora ningún estudio describió la incidencia del fuego a lo largo del gradiente altitudinal. Nosotros comparamos la incidencia del fuego entre cinco intervalos altitudinales usando una base de datos de fuegos espacialmente explícita, de 18 años, derivada de sensores remotos. Para cada intervalo, descartamos las áreas no combustibles y calculamos para cada intervalo la incidencia del fuego como el porcentaje de área quemada. La incidencia de fuego mostró un patrón unimodal a lo largo del gradiente de altitud. Las incidencias más altas se registraron a altitudes intermedias, en los intervalos de 1301-1700 m y 901-1300 m, con 3.2% y 2.7% de incidencia anual, respectivamente. La incidencia de fuego más baja se registró en el intervalo inferior (500-900 m), con 1.3% quemado anualmente, en promedio. La mayor incidencia del fuego observada a altitudes intermedias es consistente con un aumento importante de la cobertura de pastizales por encima de los 900 m s. n. m., con una simultánea reducción en la extensión de bosques. Hacia mayores altitudes, la menor incidencia del fuego es consistente con la presencia de barreras impuestas por la topografía y por las áreas rocosas no combustibles, y con las condiciones más húmedas. La mayor incidencia de fuegos observada a altitudes intermedias puede estar limitando la expansión de bosques en dichas áreas. A mayores altitudes, la baja cobertura arbórea podría estar explicada por una combinación de fuegos y presión ganadera. Nuestro estudio es el primero que muestra cómo varía la incidencia del fuego a lo largo del gradiente completo de altitud, brindando una herramienta importante para entender la distribución de la vegetación y planificar estrategias de conservación y restauración.

[Palabras clave: patrones fuego-vegetación, frecuencia de incendios, bosque, pastizal, ecología de paisajes, teledetección, sierras de Córdoba, análisis espacial, limite altitudinal de los bosques]
INTRODUCTION

Wildfires are a major disturbance in many ecosystems around the world (Bowman et al. 2009; Staver et al. 2011; Archibald et al. 2018). They play a key role in landscapes by causing strong impacts on vegetation structure and distribution (Whelan 1995; McKenzie et al. 2011; Pausas and Ribeiro 2017). Because of this reason, the description of fire spatial patterns and their association with environmental gradients is important to understand vegetation distribution in systems prone to wildfires.

In mountain ecosystems, vegetation distribution along the elevation gradient has been traditionally interpreted in terms of the decreasing temperature from base to top (Holdridge 1947; Whittaker 1956; Körner 2003), but wildfires may co-vary with the elevation gradient, and also play an important role. The climatic variation along elevation affects vegetation type and productivity, as well as soil and fuel moisture, thus influencing fire incidence (Mermoz et al. 2005; Hemp 2005; Nogués-Bravo et al. 2008; Haugo et al. 2010; Metlen et al. 2018). Additionally, other natural and human-related drivers of fire ignitions and propagation, such as local geomorphology or population density, may co-vary with elevation, further affecting fire patterns (Mermoz et al. 2005; Syphard et al. 2007, 2008; Nogués-Bravo et al. 2008). Due to these multiple drivers, the emergent response of fire to elevation in a particular mountain system may be difficult to predict. Either positive, negative, or hump-shaped relationships between elevation and fire have been described in different studies around the world (Caprio and Swetnam 1995; Mermoz et al. 2005; Brooks and Matchett 2006; Syphard et al. 2008). The relationship between fire and vegetation is particularly complex, because vegetation is not only a driver of fire, but it may be also a consequence of the fire regime. Wildfires affect vegetation by eliminating biomass and slowing ecological succession (Paritis et al. 2015; Syphard et al. 2018). As a consequence of these relationships, positive or negative feedbacks between fire and vegetation often arise (Mermoz et al. 2005; Kitzberger et al. 2012; Tepley et al. 2018). Thus, the description of fire patterns along elevation gradients is important to aid in the interpretation of vegetation response to elevation, bearing in mind that fire is both a cause and a consequence of vegetation characteristics.

As in other mountains in the world, in central Argentina the vegetation distribution is not homogeneous along the elevation gradient (500-2800 m a.s.l.). As elevation increases, forest and successional shrublands are progressively scarcer and grasslands occupy larger areas (Kurtz 1904; Luti et al. 1979; Giorgis et al. 2013, 2017; Cabido et al. 2018) (Table 1). This pattern has been often explicitly or implicitly interpreted as a consequence of the climatic variation along the elevation gradient (e.g., Luti et al. 1979; Cabido and Acosta 1988; Acosta et al. 1992), but more recently some authors have drawn attention about the role of fire in shaping mountain vegetation (e.g., Giorgis et al. 2013). Wildfires are one of the main disturbances in the mountains of central Argentina. In an intensively studied part of these mountains, nearly 456,864 ha (19% of total study area) were burned between 1999 and 2011, with some of those areas being burned three or more times over this short period (Argañaraz et al. 2015a). According to different sources (Cingolani et al. 2004; Zak 2008; Giorgis et al. 2017; Cingolani et al. (unpublished map), we have grouped these ranges into five elevation intervals (Table 1).
studies, ecosystems in these mountains experience a positive feedback between vegetation and fire. Early successional stages dominated by grasses and/or shrubs facilitate fire spread, which in turn contribute to the persistence of these early successional grasslands and shrublands (Giorgis et al. 2013, 2017; Argañaraz et al. 2015a; Alinari et al. 2019; Kowaljow et al. 2019). This has been repeatedly discussed as one of the causes of the persistently low forest cover in the Córdoba mountains along the whole gradient, but particularly at the medium and highest elevations (Renison et al. 2006; Cingolani et al. 2008; Giorgis et al. 2013, 2017; Alinari et al. 2015, 2019; Argibay and Renison 2018). Nevertheless, to date the pattern of fire incidence along the elevation gradient is not clear, blurring any interpretation about the role of fire on vegetation response to elevation. A previous study found the highest fire incidence at intermediate elevations (Mari 2005), but it was not conclusive, since it involved only a small area, a restricted elevation range (650-2350 m a. s. l.) and a short period (3 years). Thus, it is necessary to better explore the relationship between elevation and fire incidence across a larger area, including the complete elevation gradient over a longer period.

In this context, our objective was to describe fire incidence along an extensive elevation gradient in the mountains of Córdoba, in central Argentina. We compared fire incidence at different elevations using a spatially explicit 18-year fire database derived from remote sensing. Our description will contribute to improve our understanding of the multiple co-occurring factors which condition the vegetation response to elevation, and to better focus our conservation and restoration projects.

MATERIALS AND METHODS

Study area

The study was conducted in the Córdoba mountains in central Argentina (ca. 19000 km²) (Figure 1, Annex 1 and 2). They consist in three main ranges that run 110 km from east to west (63°19’ W - 65°27’ W) and 430 km from north to south (29°33’ S - 33°18’ S). Their elevation varies from ca. 500 to 2790 m a. s. l., with Mt. Champaquí being the highest peak (Figure 1). We analyzed fire incidence in non-cultivated lands included in the eastern and central mountain ranges, comprising four

Figure 1. a) Córdoba mountains in central Argentina (areas with elevation above 500 m a. s. l.). b) Elevation gradient in Córdoba mountains and the four studied mountain systems (SN: Sierras del Norte; SC: Sierras Chicas; CG: Cumbres de Gaspar; SG: Sierras Grandes). c) Study area showing excluded non-burnable areas (water bodies, rocky and urban areas).

Figura 1. a) Sierras de Córdoba en el centro de Argentina (áreas con altitud mayor a 500 m s. n. m.). b) Gradiente altitudinal de las Sierras de Córdoba y los cuatro sistemas serranos estudiados (SN: Sierras del Norte; SC: Sierras Chicas; CG: Cumbres de Gaspar; SG: Sierras Grandes). c) Área de estudio indicando las áreas no combustibles excluidas (cuerpos de agua, áreas rocosas y urbanizadas).
mountain systems (Figure 1, Annex 1 and 2). The western mountain range was not included in the study area due to the lack of spatially explicit fire databases at medium-high spatial resolution.

As in any typical mountain system, the climate in the Córdoba mountains is largely associated with the elevation gradient, with a minor influence of geographic gradients or other topographic features (Marcorá et al. 2008; Giorgis et al. 2015; Sparacino et al. 2019). In the study area, mean annual temperature vary from an average of 16.5 °C below 900 m a. s. l. to 7.5 °C at the highest elevation in Mt Champaquí, with potential evapotranspiration following a similar decreasing trend (Table 2) (Marcorá et al. 2008; Fick and Hijmans 2017). In the upper portion of the study area, mean annual precipitation reaches more than 900 mm, whereas at low elevations there is a regional rainfall gradient from east (annual rainfall 700-800 mm) to west (annual rainfall 500-600 mm), with most rainfall being concentrated in the warmest months (Colladon and Pazos 2014; Giorgis et al. 2015; Colladon 2018) (Table 2). Relatively high temperatures occur in August and September, after some months of very low rainfall, favoring seasonal fires in late winter and early spring. In the 1999-2011 period, large fires (>1000 ha) accounted for 74% of the burned area, although they only represented 3.5% of fire events (Argañaraz et al. 2015a). According to the Ministry of Environment and Sustainable Development of Argentina (2001-2014), 91% of wildfires in Córdoba are accidentally or intentionally ignited by humans. Part of these fires are set by farmers to promote forage re-growth during the dry season and to clear forest areas for cattle breeding. Under appropriate weather and fuel moisture conditions, these fires often escape from control, affecting large areas (Argañaraz et al. 2018). The fire return interval in non-cultivated lands is on average about 50 years (calculated from Argañaraz et al. 2015a), with high spatial variability according to different factors, such as rainfall, potential evapotranspiration, land cover type, and proximity to human settlements among others (Argañaraz et al. 2015b).

The elevation gradient in central Argentina can be divided into two distinct belts with different phytogeographic affinities, potentially covered by different forest types, with a transition belt between them (Kurtz 1904; Prado 1993; Cabido et al. 1998; Martínez et al. 2017). The flora in the lowest belt, up to 1300 m a. s. l., is related to the Chaco Phytogeographic Province, with forests characterized by the trees Lithraea molleoides (Vell.) Engl., Celtis ehrenbergiana (Klotzch) Liedb. and/or Schinopsis marginata Engl. (Kurtz

Table 2. Mean annual temperature, annual potential evapotranspiration and annual precipitation for different elevation intervals in the Córdoba mountains. Averages, along with maximum and minimum values, are provided for each interval1,2,3.

<table>
<thead>
<tr>
<th>Mountain belt</th>
<th>Elevation interval (m a. s. l.)</th>
<th>Temperature (^\circ C)</th>
<th>Potential ET (\text{mm/year})</th>
<th>Precipitation (\text{mm/year})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaco</td>
<td>500-900</td>
<td>16.5 (14.3-18.8)</td>
<td>811 (724-924)</td>
<td>711 (641-781)</td>
</tr>
<tr>
<td></td>
<td>901-1300</td>
<td>14.7 (13.0-16.4)</td>
<td>740 (688-810)</td>
<td>779 (752-823)</td>
</tr>
<tr>
<td>Transition</td>
<td>1301-1700</td>
<td>13.0 (11.5-14.5)</td>
<td>688 (647-748)</td>
<td>868 (825-911)</td>
</tr>
<tr>
<td>Andes</td>
<td>1701-2100</td>
<td>11.1 (9.8-12.7)</td>
<td>635 (589-690)</td>
<td>924 (924-924)</td>
</tr>
<tr>
<td></td>
<td>>2100</td>
<td>9.5 (7.5-10.4)</td>
<td>595 (537-634)</td>
<td>953 (921-993)</td>
</tr>
</tbody>
</table>

The current landscape is a complex mosaic of native and alien forests, shrublands, grasslands, outcrops and rock pavements. These different patches occur along the entire elevation gradient, but their relative cover changes with elevation (Table 1). The lowest part of the Chaco belt up to 900 m a. s. l. is dominated by native and alien forests and shrublands, whereas grasslands become more abundant above 900 m a. s. l. The transition belt between 1300 and 1700 m a. s. l. is dominated by grasslands and shrublands, with small forest patches (Giorgis et al. 2017). The Andes belt is dominated by grasslands, rocky outcrops and pavements, with little woody vegetation (Tables 1 and 3); although some relatively large forest patches can be found (Cingolani et al. 2004). Fire eliminates a large proportion of aerial tissues, but underground tissues of most native perennial species survive (Lipoma et al. 2016). Herbaceous plants rapidly recover their biomass and are very abundant a few years after fire (Giorgis et al. 2013; Alinari 2017; Jaacks 2019). Woody species have high survival rates, usually more than 80%, except in cases of extremely severe fires (Gurvich et al. 2005; Torres et al. 2014; Herrero et al. 2016; Argibay and Renison 2018; Alinari et al. 2019). They generally resprout from basal meristems, and only small individuals recover their pre-fire size two or three years after the fire. Large individuals have more probability of partially escape the fire, but often lose all their aerial biomass. In those cases, despite their initially high resprouting vigor, they need longer periods to recover their large pre-fire size (Renison et al. 2002; Gurvich et al. 2005; Alinari et al. 2015, 2019; Herrero et al. 2016).

Fire data

To analyze fire incidence along the elevation gradient, we obtained a database of fires that occurred between 1999 and 2017. The database was derived from Landsat TM/ETM+/OLI imagery (Path/rows: 229/81, 229/82; 30 m pixel) acquired between 1999 and 2017, with the exception of 2012, when Landsat 5 was no longer operational. We used the same fire database as in Argañaraz et al. (2015a), in which fire perimeters from 1999 to 2011 were extracted using the two-phase algorithm proposed by Bastarrika et al. (2011). During the first phase, pixels with high chances of being burnt are identified (seeds) and serve as the starting point for the second phase, when a region growing algorithm is applied to delineate the burned patch and its unburned islands within fire perimeters. We added the 2013-2017 period with an updated version of the Burned Area Mapping Software (BAMS, Bastarrika et al. 2014) implemented in Google Earth Engine (GEE). BAMS is based on a supervised classification strategy, in which the user provides samples of burned areas by visual interpretation and then this information is used to extract burned perimeters. The minimum mapping unit of the fire database was 5 ha, because smaller areas had higher error rates and accounted only for a small proportion of the total burned area. The producer’s accuracy of the fire database ranged from 88 to 97% and the user’s accuracy ranged from 71 to 96% (Argañaraz et al. 2015a).

Sampling design and data analyses

We divided our elevation gradient into five intervals, two of them corresponding to the Chaco belt (500-900, 901-1300 m a. s. l.), one corresponding to the transition belt (1301-1700 m a. s. l.), and two corresponding to the Andes belt (1701-2100 and >2100 m a. s. l.). For this purpose, we used the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) version 2 (30-m spatial resolution (Tachikawa et al. 2011). To limit our analysis to burnable areas, we excluded rocky and urban patches, as well as water bodies (Table 3). The rock mask was derived from Landsat TM images acquired in 2009, through a supervised classification based in training areas (A.M. Cingolani, unpublished map). The urban mask was obtained by visual interpretation of Google Earth images and the mask for water bodies was derived from a vector layer provided by the Administration of Water Resources of Córdoba Province. For each study year, we assessed fire incidence as the total burned proportion (%) at each elevation interval for the whole study area, and for each mountain system separately (Sierras Grandes, Sierras Chicas, Cumbres de Gaspar and Sierras del Norte) (Figure 1, Annex 1 and 2).
To analyze if fire incidence differed among elevation intervals, we used a general mixed linear model with the elevation interval included as a fixed factor and year ($n=18$) as a random factor, followed by Fisher LSD post-hoc comparisons ($P<0.05$). We performed this analysis for the whole study area, and for each mountain system separately. Statistical analyses were performed with Infostat (Di Rienzo et al. 2017) using an R interface (version 3.4.0, 2017). Finally, for each elevation interval, we calculated the average fire return interval as the time required to burn an area equivalent to the total burnable area.

RESULTS

All elevation intervals evidenced fire activity almost every year, reaching burned proportions close to 10% in some extreme years. Fire incidence showed a hump-shaped pattern along the elevation gradient (Figure 2). The highest fire incidence occurred at intermediate elevations, in the 1301-1700 m interval, with an average of 3.2% of the area burned annually (ranging from 0.1-10.0%). It was significantly different from incidence in the lowermost and uppermost intervals (500-900 m and >2100 m, respectively), and tended to be different than in the 1701-2100 m interval ($P=0.06$). The 901-1300 m interval ranked second, with 2.7% burned annually on average (ranging from 0.1 to 11.4%), and showed no significant differences from the 1301-1700 m interval. In the third and fourth place, 1.9 and 1.7% of the area in the upper intervals was burned annually on average (ranging from 0.2 to 9.0% and 0.0 to 13.2%, for the 1701-2100 and >2100 m intervals, respectively), with no differences between them (Figure 2). The lowermost interval (500-900 m) showed the lowest fire incidence, with 1.3% being burned annually (ranging from <0.1-4.0%), and the differences from the two intervals following in elevation were significant (Figure 2). Based on our results, we calculated an average fire return interval of 80 years for the lowest interval (500-900 m), of 37 and 32 years for the following intervals (901-1300 m and 1301-1700 m, respectively), and of 53 and 59 years for both upper intervals (1701-2100 m and >2100 m, respectively). For further details, the fire frequency map and proportion of each elevation interval burned with different fire frequencies are provided in Annex 1.

The analyses of each mountain system separately showed similar patterns (Figure 3), but without significant differences due to the high variability in the data, except in Sierras Grandes, where the differences between the lowest and the upward intervals were significant. For two of the four mountain systems, the highest fire incidence occurred in the 1301-1700 m interval, and for the remaining two, in the 901-1300 m interval, but one of them, Sierras del Norte, does not reach elevations higher than 1300 m a. s. l. (Annex 2).

Table 3

<table>
<thead>
<tr>
<th>Mountain belt</th>
<th>Elevation interval (m a. s. l.)</th>
<th>Sierras Chicas</th>
<th>Sierras Grandes</th>
<th>Cumbres de Gaspar</th>
<th>Sierras del Norte</th>
<th>Total1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaco</td>
<td>500-900</td>
<td>7.63</td>
<td>3.86</td>
<td>2.49</td>
<td>1.50</td>
<td>4.13</td>
</tr>
<tr>
<td></td>
<td>901-1300</td>
<td>2.29</td>
<td>1.05</td>
<td>0.77</td>
<td>0.80</td>
<td>1.45</td>
</tr>
<tr>
<td>Transition</td>
<td>1301-1700</td>
<td>0.28</td>
<td>4.57</td>
<td>3.90</td>
<td>-</td>
<td>3.60</td>
</tr>
<tr>
<td>Andes</td>
<td>1701-2100</td>
<td>0.18</td>
<td>17.16</td>
<td>15.21</td>
<td>-</td>
<td>16.35</td>
</tr>
<tr>
<td></td>
<td>> 2100</td>
<td>-</td>
<td>19.36</td>
<td>-</td>
<td>-</td>
<td>19.36</td>
</tr>
<tr>
<td>Total1</td>
<td>5.47</td>
<td>7.15</td>
<td>2.68</td>
<td>1.45</td>
<td>4.69</td>
<td></td>
</tr>
</tbody>
</table>

1The last column and row indicate the total unburnable proportions (%) for each elevation interval and mountain system, respectively. The unburnable proportion includes areas occupied by rock, urban areas and water bodies, and was discarded from the comparisons of fire incidence among elevation intervals.

La última columna y fila indican las proporciones no combustibles totales (%) de cada intervalo altitudinal y sistema serrano, respectivamente. La proporción de área no combustible incluye áreas ocupadas por roca, urbanizaciones y cuerpos de agua, y fue descartada de la comparación de incidencia del fuego entre intervalos altitudinales.

Table 3. Unburnable proportion (%) for each elevation interval in the four studied mountain systems in Córdoba (Argentina).

Tabla 3. Proporción de área no combustible (%) por intervalo altitudinal en los cuatro sistemas serranos estudiados en Córdoba (Argentina).
Figure 2. Mean annual fire incidence (%) and standard error for each elevation interval in the mountains of Córdoba (Argentina) between 1999 and 2017. Different letters indicate significant differences among intervals ($P<0.05$, $n=18$ years). P-value was close to significance ($P=0.06$) between the 1301-1700 and 1701-2100 m intervals.

Figure 2. Incidencia media anual del fuego (%) y error estándar para cada intervalo altitudinal en las Sierras de Córdoba (Argentina) entre 1999 y 2017. Letras diferentes indican diferencias significativas entre intervalos ($P<0.05$, $n=18$ años). El valor de P se aproximó a la significancia ($P=0.06$) entre los intervalos 1301-1700 y 1701-2100 m.

Figure 3. Mean annual fire incidence (%) and standard error per elevation interval in the four studied mountain systems in Córdoba (Argentina) between 1999 and 2017. Different letters indicate significant differences among intervals ($P<0.05$, $n=18$ years).

Figure 3. Incidencia media anual del fuego (%) y error estándar por intervalo altitudinal en los cuatro sistemas serranos estudiados en Córdoba (Argentina) entre 1999 y 2017. Letras diferentes indican diferencias significativas entre intervalos ($P<0.05$, $n=18$ años).
DISCUSSION

During the study period, fire activity was high in the mountains of Córdoba, as reported in previous studies (Argañaraz et al. 2015a). Our results indicate that wildfires occurred at all elevations almost every year; however, fire incidence was not homogeneous along the elevation gradient. It was maximum at intermediate elevations, displaying a hump-shaped pattern. Our descriptive results highlight the differential role that fire may play as a modulator of vegetation physiognomy along the elevation gradient (Giorgis et al. 2013, 2015; Kowaljow et al. 2019). Our description will contribute to provide a basis for discussing the multiple co-occurring factors which shape the vegetation response to elevation, and to build data-based hypotheses on the role of disturbance in mountains.

Fire incidence along the elevation gradient

The greater fire incidence observed at the 901-1300 m and 1301-1700 m elevation intervals is consistent with a sharp increase in the extent of grasslands above 900 m a. s. l. (Table 1) (Giorgis et al. 2013, 2017). Despite some variability in estimations among studies and sectors of the mountains, it is clear that below 900 m a. s. l. grasslands occupy less than 20% of the area, while above this elevation they cover far more extensions (Table 1). When not excessively grazed, grasslands tend to favor fire ignition and spread due to the accumulation of fine fuels, which are in general more flammable than the coarser fuels provided by woody species, trees in particular (Jaureguiberry et al. 2011; Argañaraz et al. 2018; Landi 2018; Kowaljow et al. 2019; Foster et al. 2020). In contrast, well conserved forests often limit fire ignition and spread because fine biomass accumulation and desiccation are reduced under the increased moisture and lower light conditions of the understory environment (Kunst and Bravo 2003; Tálamo and Caziani 2003; Giorgis et al. 2013; Paritsis et al. 2015; Tiribelli et al. 2018). In line with these antecedents, Argañaraz et al. (2015a) found that grasslands are proportionally more burned than forests in the Córdoba mountains.

In the Andes belt, above 1700 m a. s. l., despite the high grassland cover, fire incidence was lower. Here, geomorphology and climate may be the most important factors limiting fire ignition and/or spread (Renison et al. 2006; Argañaraz et al. 2015b). This belt is composed of steep escarpments, hilly and rocky uplands, deep valleys and dissected plateaus, resulting in a much more rugged and rocky landscape than those of the Chaco and transition belts (Cabido et al. 1987). Besides rocky outcrops, the area also has large surfaces of rock pavements and stonelands, resulting from erosion processes triggered by long-term livestock grazing and fires (Cingolani et al. 2008, 2013). These unburnable rocky areas cover a large proportion of the upper belt (16-19%) (Table 3), interrupting the spatial continuity of the fire-propagating matrix. This landscape feature limits fire spread and, in some cases, probably facilitates fire suppression activities. In fact, the largest burned areas in this belt occurred in sectors with lower proportion of unburnable surface (Figure 1; Annex 1). Additionally, deep valleys and ravines often stop the advance of fire due to their more humid conditions and low topographic position in the landscape (Renison et al. 2006). Climatic characteristics may also be playing a role in this upper belt. Low potential evapotranspiration and higher rainfall (Table 2) reduce soil water deficit, shortening the fire season, reducing the desiccation of fuels and the fire-prone weather conditions, as was reported in this and other mountains (Kasischke et al. 2002; Littell et al. 2009; Argañaraz et al. 2015a). Additionally, comparatively high soil moisture allows the occurrence of large extensions of grazing-maintained lawns dominated by short species (Cingolani et al. 2008). These lawns have very low standing biomass and litter, thus contributing to the limitation of fire spread (Vaieretti et al. 2013). Our result agrees with the lower fire activity observed in more humid areas, both locally (Argañaraz et al. 2015b) and globally (van der Werf et al. 2008; Pausas and Ribeiro 2013).

The low fire incidence observed in the lowest interval (500-900 m) was different than the expectations based on the drier conditions of low-mountain areas, which lead to longer fire seasons and a faster desiccation of fuels (Rogéau and Armstrong 2017). This low incidence could be partially related to the proximity of urban or interface areas, which are mostly concentrated in this interval (Gavier and Bucher 2004; Argañaraz et al. 2017). Even though at the local scale fire frequency is higher at relatively short distances from urban areas, the surfaces affected are often small, due to the earlier detection of smoke columns. This allows firefighters to reach the area sooner, increasing the chances of controlling the fire (Argañaraz et al. 2015b). Additionally, as we mentioned above,
the higher native forest cover in this interval compared to upper elevations, together with the expanding woody alien-dominated stands, may limit fire expansion in forested areas due to the lower fine fuel accumulation in the understory environment and higher fuel moisture (Gavier-Pizarro et al. 2012; Giorgis et al. 2016, 2017; Herrero et al. 2016; Argañaraz et al. 2016). A complementary explanation may be associated with the possible limitations to fine fuel productivity imposed by the lower rainfall and higher potential evapotranspiration in this interval, which decrease soil water availability for plants, as was proposed for this and other ecosystems (van der Werf et al. 2008; Argañaraz et al. 2015b).

Based on our fire database, we calculated the average fire return interval for each elevation interval, which ranged from 32 years (1300-1700 m) to 80 years (500-900 m). It is important to highlight that these intervals should be shorter at the local level, especially in those areas covered with more flammable vegetation (e.g., grasslands and grassy shrublands) and at relatively short distances to urban areas and roads (Argañaraz et al. 2015a, 2015b, 2017). For example, a dendroecological study performed approximately at 700 m a.s.l. close to a populated area reported six widespread fires over 82 years in a grass/shrub-dominated community. In turn, no widespread fires were detected in a nearby forest-dominated community for at least 85 years (Kowaljow et al. 2019).

Fire as a driver of vegetation distribution

Fires strongly reduce aerial biomass, and play a role in restricting forest distribution along the whole elevation gradient (Gurvich et al. 2005; Giorgis et al. 2013, 2017; Torres et al. 2014; Alinari et al. 2015; Lipoma et al. 2016; Kowaljow et al. 2019). Fire limits the expansion of both Chaco and Andes forests because small saplings or resprouting native trees grow at slow rates, about 5-20 cm per year, except in the first post-fire growth season when previously large trees may grow up to 1.5-2 m. The usually slow growth rate of native trees combined with a relatively high fire occurrence increases their chances of being burned before reaching maturity, as reported also for other systems (Marcora et al. 2008, 2013; Coop et al. 2010; Renison et al. 2015; Herrero et al. 2016; Vera 2016; Capó et al. 2016; Alinari 2017; Argibay and Renison 2018; Kowaljow et al. 2019). However, despite of wildfires having an effect along the whole gradient, our results suggest that their influence vary with elevation.

According to the observed pattern of fire incidence along our study gradient, the restriction imposed by fire to forest expansion is likely to be more severe at the transition belt (1300-1700 m a.s.l. and the upper portion of the Chaco belt (901-1300 m a.s.l.) than at other elevations. Fires contribute to the persistence of early successional stages dominated by grasses and/or shrubs, which in turn contribute to fire spread (Kowaljow et al. 2019). Fires spreading across grasslands may even gradually reduce forest cover by burning mature individuals, which in our system are rarely taller than 10-14 m, at the grassland/forest border, or in open forests, where trees are surrounded by grasses and shrubs (Giorgis et al. 2017). In the transition belt forest cover is particularly low, and forest patches, when present, are of small size (Zak 2008; Giorgis et al. 2017; Cabido et al. 2018). In addition to the higher fire incidence, this low forest cover may also be related to a poorer performance of woody species at intermediate elevations, either under non-fire conditions (Marcora et al. 2008, 2013; Vera 2016; but see Lanza et al. 2018) or when recovering from a fire event. Studies monitoring the post-fire response of both Chaco and Andes dominant woody species along the elevation gradient coincided in observing higher mortality and/or slower post-fire recovery at the transition belt, compared with the same species growing at lower (Chaco) or higher (Andes) elevations, respectively (Alinari 2017; Argibay and Renison 2018).

In the Andes belt, forest cover is low, despite the decreased fire incidence compared with the transition belt. However, some relatively large patches of *Polylepis australis* stands can be found in areas far away from sources of long-term fire and livestock disturbance (Cingolani et al. 2008). Through simulations, this study found that under a low disturbance long-term scenario, forests would occupy five times more area in the Andes belt. The dominant tree species of these elevations, *P. australis* and *M. boaria*, are highly consumed by livestock (Giorgis et al. 2010; Marcora et al. 2013). As a consequence, livestock imposes a serious restriction to the growth and survival of individuals shorter than 2 m, strongly limiting forest expansion (Teich et al. 2005; Marcora et al. 2013; Cingolani et al. 2014; Renison et al. 2015; Giorgis et al. 2020). Thus, the combination between fire and livestock, and not only
fire, may be restricting forest expansion in the Andes belt. When a fire reduces the size of Polylepis australis individuals, regrowth tissues are browsed by livestock, reducing biomass accumulation and survival (Alinari et al. 2015; Argibay and Renison 2018). In turn, when compared with Andes species, Chaco species are less palatable and livestock imposes a less severe limitation to their growth and survival (Torres and Renison 2015, 2016; Capó et al. 2016).

In the mountains of central Argentina, the combination of a slow forest recovery with a relatively high fire incidence associated with a strong feedback between vegetation and fire contributes to the persistence of a landscape dominated by early successional stages (Cingolani et al. 2013; Argañaraz et al. 2015a; Giorgis et al. 2017; Kowaljow et al. 2019). Similar positive feedbacks between fire and vegetation were described for other Chaco subregions and temperate forests of the southern hemisphere, where fire promotes the dominance of shade-intolerant and more flammable species than those present in forests (Tálamo and Caziani 2003; Blanco et al. 2014; Paritis et al. 2015; Kitzberger et al. 2016; Tepley et al. 2018). Thus, at present, it is particularly important to limit human-induced fire ignitions and fire spread in order to favor the opportunities for shrublands to mature into native closed forests in all mountain belts. This is particularly important considering that mature forests also face other threats at present. Wildland-urban interface areas are expanding on the mountains (Argañaraz et al. 2017), leading to forest loss and decreasing the area available for forest maturation and expansion. Additionally, livestock may be combined with fire to prevent forest recovery, mainly in the Andes belt; but more studies are needed to assess the relative role of livestock versus fire along the whole elevation gradient. Simultaneously, the region is being invaded by almost 40 alien tree and shrub species, hampering the recovery of native forests after fire (Giorgis et al. 2011, 2016; Gavier-Pizarro et al. 2012; Giorgis and Tecco 2014; Herrero et al. 2016; Tecco et al. 2016).

ACKNOWLEDGEMENTS. We thank Secretaría de Recursos Hídricos de la Provincia de Córdoba for providing the water body layer and I. Barberá and D. Renison for thoroughly reading the manuscript, and for J. Brasca for editing English in a previous version. We also thank the editor and two anonymous reviewers for helpful comments on this manuscript. ASTER GDEM is a product of NASA and METI. This study was funded by grants to JPA from FONCyT (PICT 2017-1766), to AMC from CONICET - DFG, Programa de Cooperación bilateral - Nivel II - Ejecución 2015-2017, D3975, and CONICET-PIP 112-201201-00164, and grants to LMB from SECyT-Universidad Nacional de Córdoba and FONCyT (PICT 1338-2016).

REFERENCES

