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ABSTRACT. In small streams, aquatic community obtains energy mainly from leaves of the riparian vegetation. 
Processing these leaves involves physical, chemical and biological factors that may differ among leaf species. 
We assessed the effects of li�er quality on leaf decomposition and colonization by aquatic invertebrates in a 
subtropical stream. Leaves from two native, highly represented tree species common in subtropical riparian 
areas, Ficus luschnathiana and Casearia sylvestris, were incubated in coarse mesh bags in a stream. Bags were 
sampled weekly during an incubation of 28 days. The decomposition rates were higher in leaves of F. 
luschnathiana than in those of C. sylvestris. In the first seven days of the experiment, leaves of F. luschnathiana 
lost ~60% of the initial mass, while Casearia sylvestris lost around 30%. The leaves of C. sylvestris were initially 
more palatable than the leaves of F. luschnathiana, perhaps due to their lower lignin and cellulose content, and 
lignin to N ratio (Lignin:N). These structural compounds enhance leaf toughness thereby protecting them from 
herbivores and detritivores. However, leaves of F. luschnathiana were comparatively softer, which apparently 
facilitated fungal colonization and conditioning. Thus, leaves of F. luschnathiana a�ained high shredders density, 
which was reflected in a higher leaf mass loss. Our results suggest that li�er decomposition was sensitive to 
fungal biomass and leaf toughness. We observed that microbial conditioning, rather than the initial chemical 
quality of the leaf li�er, decreased leaf toughness thereby stimulating further colonization by shredders and 
enhancing the decomposition process. The fungal community has a key-role in the degradation process within 
aquatic environments, breaking down even low-quality li�er (i.e., F. luschnathiana) and promoting changes in 
the composition and structure of the invertebrate community.
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RESUMEN. La colonización y descomposición biológica de la hojarasca en un arroyo subtropical. En arroyos de 
bajo orden, la comunidad acuática obtiene energía principalmente del aporte de la hojarasca que proviene de 
la vegetación de la ribera. El procesamiento de las hojas implica medios físicos, químicos y factores biológicos 
que pueden diferir entre especies vegetales. En esta investigación se evaluó el efecto de la calidad del sustrato 
sobre el proceso de descomposición y sobre la colonización por invertebrados acuáticos asociados, en un 
arroyo subtropical. Las hojas de dos especies de árboles nativos, Ficus luschnathiana y Casearia sylvestris, se 
incubaron en bolsas de malla gruesa en un arroyo durante 28 días, colectándose muestras semanalmente. 
Las tasas de descomposición fueron mayores en F. luschnathiana que en C. sylvestris. En los primeros siete 
días del experimento, F. luschnathiana perdió ~60% de la masa inicial, mientras que C. sylvestris perdió ~30%. 
Las hojas de C. sylvestris fueron inicialmente más palatables que las de F. luschnathiana, tal vez debido a su 
menor contenido de lignina y celulosa, y a su más baja relación Lignina:N. Estos compuestos estructurales le 
confieren rigidez a las hojas, las protegen de los herbívoros y las hacen más resistentes a los detritívoros. Sin 
embargo, la menor dureza de la hoja de F. luschnathiana facilitó la colonización fúngica, lo cual se reflejó, a su 
vez, en una mayor colonización por invertebrados trituradores y, en general, una mayor pérdida de masa. 
Los resultados sugieren que la descomposición de la hojarasca fue sensible a la biomasa fúngica y a la dureza 
de las hojas. Se observó que la colonización microbiana y la disminución de la dureza de las hojas tienen un 
efecto más fuerte sobre la colonización por invertebrados trituradores y sobre el proceso de descomposición 
que la calidad química inicial de la hojarasca. La comunidad fúngica es clave en los procesos de degradación 
en el medio acuático, ya que actúa en la descomposición de la hojarasca, aun en aquella de baja calidad (i.e., 
F. luschnathiana), promoviendo cambios también en la composición y en la estructura de la comunidad de 
invertebrados colonizadores.

[Palabras clave: trituración, Chironomidae, dureza foliar, biomasa fúngica]

Recibido: 30 de octubre de 2015
Aceptado: 7 de mayo de 2016

* cristiane.biasi@gmail.com 

Editora asociada: Diéguez María

h�ps://doi.org/10.25260/EA.16.26.2.0.195



190                                                                         C BIASI ET AL.                                                     L��� ������������� �� � ����������� ������                                           191Ecología Austral 26:189-199

INTRODUCTION

In low-order streams in which light 
limitation restricts primary production, 
the allochthonous material largely support 
biotic communities and ecological processes 
(Vanotte et al. 1980; Webster and Benfield 
1986). Once the plant debris enter into streams, 
organic matter and nutrients leach out while 
leaves travel downstream or remain on the 
bank, providing resources for detritivores 
and decomposers (Pettit et al. 2012). These 
processes overall reduce the size of the 
particulate organic matter, releasing nutrients 
that support aquatic communities (Tanaka et 
al. 2006). The decomposition dynamic may 
be affected by abiotic and biotic factors such 
as climate (Bruder et al. 2013), water flow 
(Fonseca et al. 2013), quantity, quality and 
diversity of leaf litter (Ferreira et al. 2012; Pettit 
et al. 2012; Biasi et al. 2013; König et al. 2014), 
the abundance of shredders (Patrick 2013), 
among other factors operating on spatial and 
temporal scales (Pérez-Harguindeguy et al. 
2000; Bastian et al. 2007).

The physical and chemical attributes of leaves 
vary substantially among species, affecting its 
utilization by microorganisms and shredders 
(Wright and Covich 2005; Bastian et al. 2007). 
Further, certain litter types attract different 
invertebrate assemblages (Schädler and Brandl 
2005). Leaf litter with high nitrogen content, 
low secondary compounds (i.e., polyphenols 
and tannins), low levels of structural 
compounds (i.e., lignin and cellulose) and 
softer is considered of high quality (Graça et 
al. 2001). Such features determine also that the 
leaf litter be more attractive to the organisms, 
thus enhancing its decomposition rate. Low-
quality leaf litter is therefore comparatively 
more stable and long-lasting, being consumed 
afterwards (Haapala et al. 2001; Graça and 
Canhoto 2006). In addition, understanding 
the effects of leaf chemical composition on 
the decomposition process is important due to 
the fact that it may reflect on nutrient cycling 
(Leroy and Marks 2006).

Leaves colonized by microorganisms 
become more palatable to leaf-shredding 
macroinvertebrates, which are within the main 
functional feeding group in low-order streams 
(Vannote et al. 1980). Leaf conditioning during 
breakdown reduce leaf toughness (Graça and 
Zimmer 2005), resulting in maximum leachate 
of nitrogen (N), protein and phosphorus (P) 
(Bärlocher 1985; Suberkropp 1992; Graça et al. 
1993) and enhancing palatability to shredders. 

Feeding and abundance of shredders have 
been correlated with increased leaf litter 
conditioning and with fungal biomass on 
leaf litter (Chergui and Pattee 1993; Graça 
et al. 1993; Robinson et al. 1998), raising the 
question of what the proximate cues are 
for shredder’s food preference (Aßmann et 
al. 2011). Shredders participate actively in 
nutrient cycling in freshwater; they convert 
coarse particulate organic matter into to fine 
particles (CPOM and FPOM, respectively) 
absorbing partly carbon and other nutrients 
in the process (Boyero et al. 2014). In the 
subtropics the community of shredders is 
composed by a few taxa (e.g., Cogo and Santos 
2013; König et al. 2014). 

In this investigation we evaluated the effect 
of litter quality in terms of lignin  cellulose 
and nitrogen contents on the decomposition 
and invertebrate colonization of two leaf 
litter types, Ficus luschnathiana and Casearia 
sylvestris, in a subtropical stream. We expect 
leaves bearing higher concentrations of lignin 
and cellulose that provide rigidity will protect 
and/or reduce the action of detritivores. On 
the contrary, high nitrogen concentration in 
leaf litter that stimulates the activity of fungi 
will turn the leaf litter more attractive to 
invertebrates increasing its decomposition 
rate. Through experimental incubations of 
leaf litter two hypothesis were tested: i) leaf 
decay rates are determined by the chemical 
composition of the detritus and thus, soft and 
highly nutritious leaf litter will decompose 
more rapidly than hard leaves, and ii) 
shredders will select for more nutritious leaf 
litter.

MATERIALS AND METHODS

Study area 

The decomposition experiment was 
conducted in a first-order stream located at 
29°39’04’’ S - 53°31’51’’ W in the Planalto and 
Central Depression areas in a subtropical 
forest region of southern Brazil (Castillero 
1984). The climate of the region is subtropical 
with annual mean temperature around 19 
°C and mean annual rainfall ~1500 mm. 
Tree diversity in this subtropical forest is 
relatively high (Cogo and Santos 2013). The 
riparian vegetation is composed by several 
tree species, mainly Cabralea canjerana (Vell.) 
Mart. (deciduous), Campomanesia xanthocarpa 
O. Berg. (semi-deciduous), Casearia sylvestris 
Sw. (semi-deciduous), Cupania vernalis 
Cambess. (semi-deciduous), Enterolobium 
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contortisiliquum (Vell.) Morong (deciduous), 
Erythrina falcata Benth. (deciduous), Ficus 
luschnathiana (Miq.) Miq. (deciduous), Inga 
alata Benoist (evergreen), Ocotea puberula 
(Rich.) Nees (evergreen), Parapiptadenia rigida 
(Benth.) Brenan (evergreen), Phytolacca dioica 
L. (deciduous), Rollinia emarginata Schltdl. 
(deciduous) and Trema micrantha (L.) Blume 
(evergreen).

The stream generally flows year-round, 
but may eventually dry during extremely 
hot and dry summers (especially in January 
and February). It has well preserved riparian 
vegetation on both sides and low human 
intervention. During the study period mean 
temperature was moderate 19.8±0.4 °C, the 
water showed mean oxygen concentration 
of 7.9±0.8 mg/L, a mean conductivity of 
22.37±5.96 mS/cm and pH averaging 6.1±0.1. 
The average width of the stream was 73±20 cm, 
the mean depth was 43±8 cm and the current 
velocity averaged 0.3±0.0 m/s.

Leaf sampling and chemical analyses

The species used in the experiment were 
Ficus luschnathiana and Casearia sylvestris. 
These species were chosen because they are 
locally abundant and all of them are native 
to the biome known as “Mata Atlantica”. 
Senescent leaves of both species were 
collected along the stream banks in October 
2011 (spring) and dried in an oven at 30 °C 
until constant weight.

The initial chemical quality of the litter was 
characterized before starting the experiment 
through measurement of leaf toughness, 
amount of nitrogen, lignin and cellulose 
levels. A penetrometer (Nolen and Pearson 
1993) was used to determine leaf toughness 
(expressed as kgf/cm2, kilogram-force per 
square centimeter) by puncturing five points 
of ten leaves from each species. The total 
nitrogen content was determined applying 
the Kjeldahl method (Flindt and Lillebo 
2005). Lignin and cellulose percentages were 
determined through the fiber acid-detergent 
method following Van Soest (1993).

Leaf decomposition 

A total of 32 mesh bags (15x20 cm, 10 
mm pore size) containing 4.0±0.1 g of leaf 
litter which were prepared to perform the 
experimental incubations in the stream. The 
experiment was set up with two treatments, 
one consisting on leaves of C. sylvestris and the 

second one with leaves of F. luschnathiana. The 
litter bags were placed in the stream at sites 
with moderate water flow. 

Four litter bags from each treatment were 
randomly removed from the stream during 
the incubation period at day 7, 14, 21, and 28. 
Replicates were packed in plastic bags and 
transported refrigerated to the laboratory. 
The samples were rinsed in a 0.25 mm 
mesh sieve to remove sediment and the 
associated invertebrates. The invertebrates 
were identified to the lowest possible 
taxonomic level, using identification guides 
(Fernández and Domínguez 2001; Merritt 
et al. 2008; Mugnai et al. 2010). In order to 
identify the Chironomidae, semi-permanent 
slides were prepared using Hoyer’s solution 
and the larvae were identified to genus level 
using the identification guides by Trivinho-
Strixino (2011) and Epler (2001). The taxa 
were classified in trophic groups according to 
Cummins et al. (2005), Wantzen and Wagner 
(2006) and Merritt et al. (2008).

Fungal biomass

Fungal biomass was estimated indirectly 
through the concentration of ergosterol, a 
natural constituent of most fungal cells that 
has been used previously as a proxy of the 
aquatic fungal biomass (Gessner 2005). For this 
purpose, 10 leaf discs (12 mm) were obtained 
from each replicate which were maintained 
at -20 °C until the extraction protocol was 
applied. The ergosterol was extracted 
applying the Microwave Assisted Extraction 
method (Young 1995) and was quantified by 
high-performance liquid chromatography 
(HPLC) by injecting 10 µL during 8 minutes. 
The mobile phase was 100% methanol and the 
detection wavelength was 282 nm (Gessner 
2005). The HPLC system was equipped 
with a LiChroCART 250-4 LiChrospher 100 
RP-18 (5 mm) column (Merck, Darmstadt, 
Germany) Results were expressed as µg fungal 
biomass/g dry mass. The leaves were dried in 
an air-circulation oven at 60 °C during 72 h to 
determine the remaining dried mass.

Data analysis

The resulting values of the remaining 
dry mass (Wt) were fitted to a negative 
exponential model following Webster and 
Benfield (1986):

Wt = W0.e-kt    (1)
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where W0=initial dry mass, k=breakdown 
constant and t=incubation time.

For each experimental treatment, the 
total density of organisms and the density 
of shredders were calculated after Gotelli 
and Colwell (2001). The results obtained 
of remaining dry mass, leaf toughness 
and macroinvertebrate colonization were 
compared by means of a two-way analysis of 
variance (Two-way ANOVA), using leaf litter 
type (2 levels) and incubation time (3 levels) as 
main factors. The lignin, cellulose and nitrogen 
content of the leaf litter types were compared 
by means of t-tests. Invertebrate density values 
were log-transformed (log[x+1]). All statistical 
analyses were conducted using soft-ware R (R 
Development Core Team 2012).

RESULTS

Chemical Quality and Leaf Breakdown

The leaves of C. sylvestris and F. luschnathiana 
differed in their lignin, cellulose and N 
contents, and also showed contrasting Lignin:
N ratios and leaf toughness (Table 1). The C. 
sylvestris showed lower lignin and cellulose 
content, lower Lignin:N ratio and higher N 
level as compared to F. luschnathiana. The 
latter showed lower initial leaf toughness 
(Table 1). The leaf toughness decreased with 
the incubation time and resulted higher in C. 
sylvestris throughout the experiment (Species: 
GL=1, F=3.94, P=0.0001; Time: GL=4, F=8.10, 
P=0.0001; Species×Time: GL=4, F=1.11, 
P=0.0986) (Figure 1). The remaining dry 
mass differed between the species and among 
incubation times (P=0.0005; Litter type: GL=1, 
F=28.52, P=0.0001; Time: GL=4, F=113.41, 
P=0.0001; Litter type×Time: GL=4, F=4.09).

 In the first seven days of the experiment, F. 
luschnathiana lost approximately 60% of the 
initial mass, while C. sylvestris lost around 

Ficus 
luschnathiana

Casearia 
sylvestris

P

Lignin (%) 20.38±2.81 10.11±0.84 <0.001
Cellulose (%) 14.27±1.38 8.63±0.87 <0.001
Nitrogen (%) 2.12±0.32 3.28±0.39 0.010
Lignin:N 9.61±1.98 3.08±0.75 0.002
Leaf toughness 
(kgf/cm2)

65.6±4.3 81.2±3.2 <0.001

Table 1. Percentage of lignin, cellulose, nitrogen, lignin 
to nitrogen ratio and leaf toughness in leaves of Ficus 
luschnathiana and Casearia sylvestris. 
Tabla 1. Porcentaje de la lignina, celulosa, nitrógeno 
y dureza de las hojas de Ficus luschnathiana y Casearia 
sylvestris.

Figure 1. Changes in the toughness (kgf/cm2) of Casearea 
sylvestris and Ficus luschnathiana leaf litter during the 
decomposition experiment, at day 7, 14, 21 and 28 of 
incubation in a subtropical stream. 
Figura 1. Cambios en la dureza de la hojarasca (kgf/cm2) 
de Casearea sylvestris y Ficus luschnathiana durante el 
experimento de descomposición, a los 7, 14, 21 y 28 días 
de incubación en un arroyo subtropical.

Figure 2. Percentage of remaining leaf litter mass of 
Casearea sylvestris and Ficus luschnathiana during the 
decomposition experiment, at day 7, 14, 21 and 28 of the 
incubation time in a subtropical stream. 
Figura 2. Porcentaje de peso remanente de hojarasca 
de Casearea sylvestris y Ficus luschnathiana durante el 
experimento de descomposición, a los 7, 14, 21 y 28 días 
de incubación en un arroyo subtropical.
30% (Figure 2). F. luschnathiana showed 
higher breakdown rates than C. sylvestris 
(k=0.238±0.022 1/d and k=0.090±0.91 1/d, 
respectively).

Biological colonization

The total density of macroinvertebrates varied 
significantly between leaf litter types (Table 
2) and it was dependent on the incubation 
time. The highest macroinvertebrate density 
was found in F. luschnathiana at day 14 of 
the experimental incubation. The density of 
shredders differed between leaf species and 
also among incubation times (Table 2).

Gathering-collectors were the most numerous 
group (44%), followed by filtering-collectors 
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(25%), scrappers (12.4%), shredders (9.6%) and 
predators (9%). The shredders group were 
represented by Grypopterigidae, Tipulidae, 
Calamoceratidae (Phylloicus), Hyallelidae 
(Hyallela) and the chironomids Endotribelos, 
Stenochironomus, Cricotopus and Rheocricotopus. 
The inclusion chironomids increased ~ 7.5% 
the abundance of shredders. F. luschnathiana 

Figure 3. Changes in the concentration of ergosterol 
(µg/g DM) in leaf litter of Casearea sylvestris and Ficus 
luschnathiana in the decomposition experiment, at day 
7, 14, 21 and 28 of the incubation time in a subtropical 
stream.
Figura 3. Concentración de ergosterol (µg/g DM) en 
la hojarasca de Casearea sylvestris y Ficus luschnathiana 
durante el experimento de descomposición, a los 7, 14, 
21 y 28 días de incubación en un arroyo subtropical.

ANOVA two-way (P<0.05)
F P d.f.

Invertebrate density 
Leaf litter type 7.248 <0.001 1
Time 1.864 0.048 3
Species×Time 1.090 0.022 2
Shredders density
Leaf litter type 4.083 0.001 1
Time 3.711 0.033 3
Species×Time 1.456 0.075 2

Table 2. Results of the Two way ANOVA applied to study 
the effect of litter type, incubation time and the interaction 
between these variables on invertebrate and shredders 
densities (individuals/g dry mass) in experiment of 
decomposition. d.f.=degrees of freedom. 
Tabla 2. Resultados del ANOVA de dos vías aplicado para 
estudiar el effecto de la especie de hojarasca, el tempo 
de incubación y su interacción sobre la abundancia de 
invertebrados y trituradores (individuos/g de materia 
seca) en el experimento de descomposición. d.f.=grados 
de libertad.

had the highest abundance of shredders (73%), 
especially after 14 days of incubation (Table 
3). The leaves of F. luschnathiana showed 
higher concentrations of ergosterol during the 
experiment as compared to C. sylvestris (Figure 
3) and both leaf types showed maximum 
concentration of this compound at day 14 of 
the incubation.

Table 3. Total abundance of the macroinvertebrate taxa colonizing experimental enclosures with leaf litter from Ficus 
luschnathiana and Casearea sylvestris at different incubation times (7, 14, 21 and 28 days) in subtropical stream. 
Tabla 3. Abundancia total de los taxones de macroinvertebrados que colonizan las clausuras con hojas de Ficus 
luschnathiana y Casearea sylvestris en las incubaciones experimentales (días 7, 14, 21 y 28) en un arroyo subtropical.

Ficus luschnathiana Casearea sylvestris
Day 7 Day 14 Day 21 Day 28 Day 7 Day 14 Day 21 Day 28

Decapoda
Aeglidae
Aegla 0 3 8 7 3 0 0 7
Amphipoda
Hyalella 0 9 13 25 2 1 1 9
Colembolla
Isotomidae 0 0 0 0 1 0 0 0
Coleoptera
Elmidae 20 27 32 3 9 16 9 12
Psephenidae 0 5 0 0 0 0 4 3
Diptera
Chironomidae
Ablabesmyia 2 0 0 0 0 0 0 0
Chironomus 2 0 1 1 0 0 0 0
Corynoneura 469 243 31 131 55 145 41 200
Cricotopus 12 20 15 9 15 13 8 5
Endotribelos 16 181 16 15 5 8 1 16
Paratendipes 3 0 0 0 0 0 0 0
Parametriocnemus 104 35 28 32 55 61 60 90
Pentaneura 21 2 22 12 5 7 8 11
Polypedilum 19 67 16 14 7 40 27 9
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Ficus luschnathiana Casearea sylvestris

Day 7 Day 14 Day 21 Day 28 Day 7 Day 14 Day 21 Day 28

Rheocricotopus 5 0 1 4 0 0 1 0
Rheotanytarsus 8 9 3 0 1 5 12 3
Stenochironomus 8 10 5 3 0 2 0 0
Tanytarsus 2 0 0 0 1 4 0 0
Thienemanniella 284 52 199 105 62 65 44 65
Dixidae 20 15 28 1 3 3 6 3
Dytisidae 0 0 0 1 0 0 0 0
Empididae 11 4 14 0 3 5 5 2
Psychodidae 2 3 5 0 2 2 5 1
Simulidae 200 219 108 37 69 77 49 47
Tipulidae 0 0 5 0 1 1 1 0
Ephemeroptera
Baetidae 13 32 26 83 4 11 11 40
Caenidae 30 33 59 50 6 25 11 48
Lepthobhleliidae 0 0 0 1 0 1 0 0
Hemiptera
Belostomatidae 0 0 0 1 0 0 0 0
Odonata
Calopterigidae 0 0 0 1 0 1 1 1
Ceratopogonidae 0 3 0 0 0 0 1 0
Libelulidae 0 0 0 1 0 0 0 0
Plecoptera
Grypopterigidae 10 12 10 16 4 2 2 5
Trichoptera
Calamoceratidae
Phylloicus 5 7 14 1 0 5 1 5
Glossosomatidae 0 0 0 0 0 1 0 0
Helicopsychidae 0 0 0 0 0 0 0 1
Hydrobiosidae 10 12 4 1 1 4 0 5
Hydrophilidae 0 1 9 1 3 4 11 2
Hydropsychidae 69 239 295 25 87 109 22 41
Leptoceridae 9 4 20 6 4 11 5 16
Mollusca
Gastropoda 158 87 160 84 32 37 82 53

Table 3: Continuation
Tabla 3: Continuación

DISCUSSION

Chemical Quality and Leaf Breakdown

C. sylvestris and F. luschnathiana present 
different values as food resource in terms 
of their chemical quality. Based on Lignin:
N ratios, lignin and cellulose concentrations, 
C. sylvestris leaf litter can be considered as 
a higher quality food resource compared to 
the leaf litter of F. luschnathiana, although the 
leaves of the latter are softer. 

The breakdown rates of F. luschnathiana 
and C. sylvestris were classified as rapid 
based on Petersen and Cumming (1974), who 
proposed that decomposition rates can be 
rapid (k>0.01), intermediate (0.005< k<0.001) 

or slow (k<0.005), based on the remaining dry 
mass percentage. Decomposition processes in 
streams may relate also with temperature and 
prevailing hydrological conditions, such as the 
water velocity and the slopes of the banks 
(Hepp et al. 2008; König et al. 2014). The 
decomposition rates recorded in the present 
analysis are higher than those reported in 
other studies performed in subtropical 
streams (Biasi et al. 2013; Cogo and Santos 
2013; König et al. 2014). Compared to these 
studies in which temperature was moderate 
(17.6 °C; 13.5 °C; 14.2 °C, respectively), 
the temperature during our experimental 
incubations was on average 4.7 °C higher 
(19.8 °C). Temperature seasonality can be 
an important factor determining breakdown 
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rates. The higher temperatures characteristic 
of the warmer season probably enhanced the 
activity of the microbial community associated 
to the leaves thus promoting faster breakdown 
rates (e.g., Pascoal and Cássio 2004; Ferreira 
et al. 2006). 

F. luschnathiana leaf litter showed the largest 
mass loss. The leaching recorded in the first 
days of incubation was apparently the main 
factor explaining the rapid decomposition. 
During this process, many hydrosoluble 
compounds, such as proteins, amino acids, 
carbohydrates, and lipids are leached, 
accelerating the loss of leaf mass. The water 
velocity in the stream (~0.3 m/s) may have 
contributed to the leaching observed in two 
species. According to Fonseca et al. (2013), a 
faster current increases the mass loss during 
leaching, favoring the transport of fine 
particulate and dissolved organic matter, 
and even enhancing the loss of refractory 
material.

The decomposition rates were not related 
to the initial quality of the litter. We did not 
observe an increase in the decomposition rate 
in litter of C. sylvestris that showed a high 
nutritional quality. However, we observed a 
high mass loss at low leaf toughness. Recent 
studies in tropical streams have shown that leaf 
toughness rather than N and P concentrations 
controls litter breakdown rates (Ardón et al. 
2009; Li et al. 2009). This leaf trait is related 
with rigid leaves protected from herbivory, 
and consequently also from detritivores. 
The leaf toughness can be related negatively 
with fragmentation and leaf decomposition 
(Foucreau et al. 2013). Some studies have also 
reported no clear relationship between litter 
initial chemical quality and decomposition 
(Moore and Fairweather 2006; Swan and 
Palmer 2004; Lecerf et al. 2007; Abelho 2009; 
Schindler and Gessner 2009). Different species 
may have particular chemical composition; the 
leaves may be changed by the immersion in the 
stream and the leaching, which overall alter 
their chemical quality (Pettit et al. 2012).

Biological colonization

We observed a high density of shredders 
colonizing F. luschnathiana leaf litter. This 
species, considered “a priori” as a low quality 
litter, showed higher mass loss and higher 
fungal biomass than C. sylvestris. Although of 
nutritionally low quality in terms of nitrogen, 
F. luschnathiana showed the highest fungal 
biomass during all the experiments, which 

likely produced labile detritus enhancing 
its palatability and favoring consumption 
by detritivores (Graça and Cressa 2010). 
The breakdown  of herbivore-inhibiting 
compounds by aquatic fungi may favor 
assimilation of elements by invertebrates 
(Graça et al. 2001). Although leaf litter of 
F. luschnathiana can be considered of lower 
quality compared to C. sylvestris, the former 
has lower leaf toughness. This leaf trait has 
been considered as an important factor 
affecting leaf breakdown, since it is related 
with the resistance to physical abrasion and 
fragmentation (Ratnarajah and Bermuta 
2009; Fonseca et al. 2013). A decrease in 
leaf toughness has been associated with 
higher densities of shredders (Foucreau et al. 
2013). As the fungal community establishes 
the resistance of leaves decreases, thereby 
reducing leaf toughness (Aßmann et al. 2011). 
Thus, litter conditioning and leaf toughness 
reduction may be recall to explain the higher 
rates of decomposition found in leaf litter of 
F. luschnathiana. 

Chironomidae was the most numerous 
group during the entire decomposition 
process, comprising alone 7.5% of the 
shredders. The genus Endotribelos increased 
shredders density, likely contributing to 
enhance leaf decomposition, as has been 
shown in other related studies (Janke and 
Trivinho-Strixino 2007; Chará-Serna et al. 
2012; Leite-Rossi and Trivinho-Strixino 2012). 
Similarly, chironomids have been recorded 
as important components of the invertebrate 
communities attaining high abundance and 
richness. These insects play an important role 
in nutrient recycling (Oertli 1993; Grubbs et al. 
1995; Callisto et al. 2007; Hepp et al. 2008) since 
many of them are generalists and colonize 
different types of detritus, regardless of its 
quality and intervening in its breakdown 
(Moretti et al. 2007; Landeiro et al. 2008; Li 
et al. 2009; Biasi et al. 2013). In certain cases, 
chironomids may participate actively in 
shredding and eroding the leaves, utilizing 
this detritus as a food resource (Rosemond et 
al. 1998). However, since chironomids have 
a wide range of food habits at the genus and 
species level, their role in leaf fragmentation 
may be underestimated. The results 
presented here highlight the importance of 
chironomids in the fragmentation of detritus. 
As chironomid shredders are present at high 
densities in association with detritus, they 
should be considered co-participants of the 
decomposition process in tropical aquatic 
systems.
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 The dominance of collector-gatherers 
and collector-filterers may relate to litter 
conditioning by fungi and shredders that 
release fine particulate matter and dissolved 
organic matter, facilitating colonization by 
these groups. Collector-gatherers and collector-
filterers, are not able to directly participate 
in the rapid breakdown of leaves. They use 
leaf litter as substratum and leaf fragments 
as a food resource. Dudgeon and Wu (1999) 
suggested that collector-filtering organisms, 
mainly Simuliidae, use leaves as a substratum, 
which may explain their occurrence in large 
numbers in our experimental litter bags.

The shredders, represented mainly by 
Hyalella, Grypopterigidae, Phylloicus, 
Endotribelos, Polypedilum and Cricotopus were 
more numerous in enclosures with leaf litter 
of F. luschnathiana. The density of shredders 
was determined by the litter species and 
degradation time. Several studies have 
recorded a low occurrence of shredders in 
tropical streams (Wantzen and Wagner 2006; 
Gonçalves et al. 2007; Moretti et al. 2007), 
pointing to the microbial community as the 
primary contributor to the decomposition of 
leaves. Although chironomids can produce 
much of the fragmentation as observed here, 
most studies have underestimated their 
potential role in the decomposition process. 
Furthermore, Aegla, a macroconsumer that can 
attain high densities, could also contribute to 
the fragmentation of coarse organic-matter 
(Cogo and Santos 2013).

The incubation time of detritus is important 
for invertebrate colonization as has been 
also observed by Abelho (2001), Leroy and 
Marks (2006) and Ligeiro et al. (2010). Many 
studies evaluating invertebrate colonization 
of decomposing debris have observed a 
steady increase in density from the beginning 
towards the end of the experiment (Dudgeon 
1982; Webster and Befield 1986; Benstead 
1996; Gonçalves et al. 2012). Apparently, the 
leaf fragmentation process and the release of 
nutrients create an appropriate substratum 
for the development of the insects that use 

detritus in their diet and over time increase its 
quality, through microbial conditioning. The 
changes in the community during incubation 
time may relate to chemical and microbial 
conditioning, which together induce changes 
in the detritus making it more attractive to 
macroinvertebrates (Abelho 2001; Graça et 
al. 2001). This result suggests that shredders 
are able to discriminate advanced stages of 
leaf decomposition, which is consistent with 
the observation of Ligeiro et al. (2010) on leaf 
colonization by shredders. It may be possible 
that the ergosterol content of tough leaves 
increases while toughness decreases during 
the conditioning process. Our results also 
suggest that F. luschnathiana is a resource 
that becomes palatable depending on its 
residence time in the stream, during which 
leaf toughness is reduced by chemical and 
biological conditioning.

Our results suggest that leaf litter 
decomposition was driven by fungal biomass 
and leaf toughness. Contrary to the initial 
hypothesis, we observed that the microbial 
colonization and the decrease of leaf toughness 
rather than the initial chemical quality, 
determine the colonization by shredders and 
the decomposition process. Conditioning by 
the fungal community is particularly relevant 
to the overall decomposition process, since it 
breaks down low-quality litter, as in the case 
of F. luschnathiana leaf litter. On the whole, 
this study indicates that leaf physical traits 
such as toughness may be more important 
than leaf chemical traits, thereby driving 
decomposition rates.
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