El “siempreverde” (Ligustrum lucidum), ¿Altera la composición de las comunidades de hongos micorrícicos arbusculares en el Chaco Serrano?

  • Valentina Borda Instituto Multidisciplinario de Biología Vegetal (CONICET, FCEFyN), Universidad Nacional de Córdoba, Córdoba, Argentina.
  • M. Noelia Cofré Instituto Multidisciplinario de Biología Vegetal (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.
  • Silvana Longo Instituto Multidisciplinario de Biología Vegetal (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.
  • Gabriel Grilli Instituto Multidisciplinario de Biología Vegetal (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.
  • Carlos Urcelay Instituto Multidisciplinario de Biología Vegetal (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina.
Palabras clave: planta invasora leñosa, grupos funcionales de hongos, propiedades del suelo, simbiosis

Resumen

Las invasiones biológicas representan una gran amenaza para la biodiversidad y la integridad de los ecosistemas dado que alteran las comunidades bióticas. Entre las comunidades bióticas del suelo se destacan los hongos micorrícicos arbusculares (HMA), que establecen asociaciones simbióticas con la mayoría de las plantas terrestres. Las especies de HMA no responden del mismo modo a los cambios ambientales, por lo que se propuso la existencia de grupos de especies de HMA con estrategias ecológicas compartidas (ruderales, competidoras y estrés tolerantes). Las plantas invasoras son capaces de alterar las comunidades de HMA para su propio beneficio. Este podría ser el caso del “siempreverde” (Ligustrum lucidum), un árbol asiático que invade numerosos sectores de la Argentina y forma, en algunas zonas, bosques monoespecíficos densos. En este estudio se compararon las comunidades de esporas de HMA entre bosques monoespecíficos de siempreverde y bosques chaqueños serranos nativos. Se seleccionaron 6 áreas con ambos tipos de bosque. De cada área se tomaron muestras de suelo, a las que se les midieron características físico-químicas y se les extrajeron las esporas de HMA. De acuerdo con lo esperado, la composición de las comunidades de esporas de estos bosques monoespecíficos fue diferente a la presente en suelos de bosques nativos. La riqueza de morfoespecies de esporas de HMA no mostró diferencias entre ambos tipos de bosque, pero la abundancia total fue mayor en los suelos de bosque de siempreverde, que presentan un mayor número de esporas de especies ruderales. Este estudio provee evidencia que sugiere que la expansión del siempreverde altera las comunidades de esporas de HMA y algunas propiedades químicas del suelo. Estos cambios posiblemente sean parte del mecanismo que promueve la formación de bosques monoespecíficos.

Biografía del autor/a

Valentina Borda, Instituto Multidisciplinario de Biología Vegetal (CONICET, FCEFyN), Universidad Nacional de Córdoba, Córdoba, Argentina.

Laboratorio de Micologia, IMBIV (CONICET- UNC). Becaria doctoral en CONICET (convocatoria 2018, temas estrategicos).

Citas

Aliasgharzadeh, N., S. N. Rastin, H. Towfighi, and A. Alizadeh. 2001. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11:119-122. https://doi.org/10.1007/s005720100113.

Anderson, M. J. 2006. Distance-based tests for homogeneity of multivariate dispersions Biometrics 62:245 53. https://doi.org/10.1111/j.1541-0420.2005.00440.x.

Aragón, R., L. Montti, M. Ayup, and R. Fernández. 2014a. Exotic species as modifiers of ecosystem processes: Litter decomposition in native and invaded secondary forests of NW Argentina. Acta Oecologica 54:21-28. https://doi.org/10.1016/j.actao.2013.03.007.

Aragón, R., J. Sardans, and J. Peñuelas. 2014b. Soil enzymes associated with carbon and nitrogen cycling in invaded and native secondary forests of northwestern Argentina. Plant and Soil 384:169-183. https://doi.org/10.1007/s11104-014-2192-8.

Bever, J. D., S. C. Richardson, B. M. Lawrence, J. Holmes, and M. Watson. 2009. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecology Letters 12:13-21. https://doi.org/10.1111/j.1461-0248.2008.01254.x.

Brundrett, M., N. Bougher, B. Dell, and T. Grove. 1996. Working With Mycorrhizas in Forestry and Agriculture. ACIAR Monograph 32. Canberra, Australia: Australian Centre for International Agricultural Research.

Burrows, R. L., and F. L. Pfleger. 2002. Arbuscular mycorrhizal fungi respond to increasing plant diversity. Canadian Journal of Botany 80:120-130. https://doi.org/10.1139/b01-138.

Castro‐Díez, P., A. S. Vaz, J. S. Silva, M. Van Loo, Á. Alonso, C. Aponte, A. Bayón, P. J. Bellingham, M. C. Chiuffo, N. DiManno, K. Julian, S. Kandert, N. La Porta, H. Marchante, H. G. Maule, M. Margaret, M. Mayfield, D. Metcalfe, M. C. Monteverdi, M. A. Núñez, R. Ostertag, I. M. Parker, D. A. Peltzer, L. J. Potgieter, M. Raymundo, D. Rayome, O. Reisman‐Berman, D. M. Richardson, R. E. Roos A. Saldaña, R. T. Shackleton, A. Torres, M. Trudgen, J. Urban, J. R. Vicente, M. Vilà, T. Ylioja, R. D. Zenni, and O. Godoy. 2019. Global effects of non‐native tree species on multiple ecosystem services. Biological Reviews 94:1477-1501. https://doi.org/10.1111/brv.12511.

Cabido, M. R., and M. R. Zak. 1999. Vegetación del Norte de Córdoba. Secretaria de Agricultura, Ganadería y Recursos Renovables de Córdoba.

Cabrera, A. L. 1976. Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería. Tomo II, Fasc. I, Buenos Aires.

Chagnon, P. L., R. L. Bradley, H. Maherali, and J. N. Klironomos. 2013. A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science 18:484-491. https://doi.org/10.1016/j.tplants.2013.05.001.

Cofré, M. N., A. E. Ferrari, A. Becerra, L. Domínguez, L. G. Wall, and C. Urcelay. 2017. Effects of cropping systems under no‐till agriculture on arbuscular mycorrhizal fungi in Argentinean Pampas. Soil Use and Management 33:364-378. https://doi.org/10.1111/sum.12349.

Davison, J., M. Opik, J. T. Daniell, M. Moora, and M. Zoobel. 2011. Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiology Ecology 78:103-115. https://doi.org/10.1111/j.1574-6941.2011.01103.x.

Dudinszky, N., M. N. Cabello, A. A. Grimoldi, S. Schalamuk, and R. A. Golluscio. 2019. Role of Grazing Intensity on Shaping Arbuscular Mycorrhizal Fungi Communities in Patagonian Semiarid Steppes. Rangeland Ecology and Management 72:692-699. https://doi.org/10.1016/j.rama.2019.02.007.

Dufrene, M., and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67:345-366. https://doi.org/10.2307/2963459. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2.

Egerton-Warburton, L. M., and E. B. Allen. 2000. Shifts in arbuscular mycorrhizal communities along an anthropogenic nitrogen deposition gradient. Ecological Applications 10:484-496. https://doi.org/10.1890/1051-0761(2000)010[0484:SIAMCA]2.0.CO;2.

Ehrenfeld, J. G. 2010. Ecosystem consequences of biological invasions. Annual Review of Ecology, Evolution and Systematics 41:59-80. https://doi.org/10.1146/annurev-ecolsys-102209-144650.

Eom, A. H., D. C. Hartnett, and G. W. T. Wilson. 2000. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122:435-444. https://doi.org/10.1007/s004420050050.

Estrabou, C. 1983. Relevamiento de variantes fisonómicas de la cuenca La Quebrada. Seminarios I y II. Carrera de Ciencias Biológicas, F.C.E.F. y N., Universidad Nacional de Córdoba.

Fernández, R. D., N. Bulacio, A. Álvarez, H. Pajot, and R. Aragón. 2017. Fungal decomposers of leaf litter from an invaded and native mountain forest of NW Argentina. Antonie van Leeuwenhoek 110:1207-1218. https://doi.org/10.1007/s10482-017-0893-8.

Fitter, A. H. 2005. Darkness visible: reflections on underground ecology. Journal of Ecology 93:231-243. https://doi.org/10.1111/j.0022-0477.2005.00990.x.

Fitzsimons, M. S., R. M. Miller, and J. D Jastrow. 2008. Scale-dependent niche axes of arbuscular mycorrhizal fungi. Oecologia 158:117-127. https://doi.org/10.1007/s00442-008-1117-8.

Faggioli, V. S., M. N. Cabello, G. Grilli, M. Vasar, F. Covacevich, and M. Öpik. 2019.Root colonizing and soil borne communities of arbuscular mycorrhizal fungi differ among soybean fields with contrasting historical land use. Agriculture, Ecosystems and Environment 269:174-182. https://doi.org/10.1016/j.agee.2018.10.002.

Fracchia S., A. Aranda, A. Gopar, V. Silvani, L. Fernández, and A. Godeas. 2009. Mycorrhizal status of plant species in the Chaco Serrano woodland from central Argentina. Mycorrhiza 19:205-214. https://doi.org/10.1007/s00572-009-0231-8.

Furey, C., P. A. Tecco, N. Pérez-Harguindeguy, M. A. Giorgis, and M. Grossi. 2014. The importance of native and exotic plant identity and dominance on decomposition patterns in mountain woodlands of central Argentina. Acta Oecologica 54:13-20. https://doi.org/10.1016/j.actao.2012.12.005.

Gavier-Pizarro, G. I., T. Kuemmerle, L. E. Hoyos, S. I. Stewart, C. D. Huebner, N. S. Keuler, and V. C. Radeloff. 2012. Monitoring the invasion of an exotic tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ satellite data and Support Vector Machines in Córdoba, Argentina. Remote Sensing of Environment 122:134-145. https://doi.org/10.1016/j.rse.2011.09.023.

Giorgis, M. A, A. M. Cingolani, D. E. Gurvich, P. A. Tecco, J. Chiapella, F. Chiarini, and M. Cabido. 2017. Changes in floristic composition and physiognomy are decoupled along elevation gradients in central Argentina. Applied Vegetation Science 20:558-571. https://doi.org/10.1111/avsc.12324.

Greipsson, S., and A. DiTommaso. 2006. Invasive non-native plants alter the occurrence of arbuscular mycorrhizal fungi and benefit from this association. Ecological Restoration 24:236-241. https://doi.org/10.3368/er.24.4.236.

Grilli, G., C. Urcelay, and L. Galetto. 2012. Forest fragment size and nutrient availability: complex responses of mycorrhizal fungi in native-exotic hosts. Plant Ecology 213:155-165. https://doi.org/10.1007/s11258-011-9966-3.

Grime, J. P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111:1169-1194. https://doi.org/10.1086/283244.

Guisande-Collazo, A., L. González, and P. Souza-Alonso. 2016. Impact of an invasive nitrogen-fixing tree on arbuscular mycorrhizal fungi and the development of native species. AoB Plants 8. https://doi.org/10.1093/aobpla/plw018.

Helgason, T., J. W. Merryweather, J. Denison, P. Wilson, and J. P. W. Young. 2002. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate desiduous woodland. Journal of Ecology 90:371-384. https://doi.org/10.1046/j.1365-2745.2001.00674.x.

van der Heyde, M., B. Ohsowski, L. K. Abbott, and M. Hart. 2017. Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza 27:431-440. https://doi.org/10.1007/s00572-016-0759-3.

Hiiesalu, I., M. Pärtel, J. Davison, P. Gerhold, M. Metsis, M. Moora, M. Opik, M. Vasar, M. Zobel, and S. D. Wilson. 2014. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytologist 203:233-244. https://doi.org/10.1111/nph.12765.

Hobbie, S. E. 1992. Effects of plant species on nutrient cycling. Trends in Ecology and Evolution 7:336-339. https://doi.org/10.1016/0169-5347(92)90126-V.

Hoyos, L. E., G. I. Gavier-Pizarro, T. Kuemmerle, E. H. Bucher, V. C. Radeloff, and P. A. Tecco. 2010. Invasion of glossy privet (Ligustrum lucidum) and native forest loss in the Sierras Chicas of Córdoba, Argentina. Biological Invasions 12:3261-3275. https://doi.org/10.1007/s10530-010-9720-0.

Jansa, J., A. Erb, H. R. Oberholzer, P. Šmilauer, and S. Egli. 2014. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Molecular Ecology 23:2118-2135. https://doi.org/10.1111/mec.12706.

Kiers, E. T., M. Duhamel, Y. Beesetty, J. A Mensah, O. Franken, E Verbruggen, R. C. Fellbaum, A. G. Kowalchuk, M. M. Hart, A. Bago, T. M. Palmer, S. A. West, P. Vandenkoornhuyse, and J. Jansa. 2011. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880-882. https://doi.org/10.1126/science.1208473.

Liao, C., R. Peng, Y. Luo, X. Zhou, X Wu, C. Fang, C., J. Chen, and B. Li. 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta‐analysis. New Phytologist 177:706-714. https://doi.org/10.1111/j.1469-8137.2007.02290.x.

Longo, S., E. Nouhra, B. T. Goto, R. L. Berbara, and C. Urcelay. 2014. Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. Forest Ecology and Management 315:86-94. https://doi.org/10.1016/j.foreco.2013.12.027.

Longo, S., N. Cofré, F. Soteras, G. Grilli, M. Lugo, and C. Urcelay. 2016. Taxonomic and Functional Response of Arbuscular Mycorrhizal Fungi to Land Use Change in Central Argentina. Pp. 81-90 en M. C. Pagano (ed.). Recent advances on mycorrhizal fungi. Springer. Belo Horizonte. Minas Gerais. Brazil. https://doi.org/10.1007/978-3-319-24355-9_7.

Lovelock, C. E., K. Andersen, and J. B. Morton. 2003. Arbuscular mycorrhizal communities in tropical forests are affected by host tree species and environment. Oecologia 135:268-279. https://doi.org/10.1007/s00442-002-1166-3.

Lutti, R., M. Solis, M Galera, N Muller, and M. Berzal. 1979. Vegetación. Pp. 297-368 en J. Vázquez, R. Miatello and M. Roque (eds.). Geografía Física de la Provincia de Córdoba. Boldt. Buenos Aires. Argentina.

Maherali, H., and J. N. Klironomos. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746-1748. https://doi.org/10.1126/science.1143082.

Moglia, G., and A. M. Giménez. 1998. Rasgos anatómicos característicos del hidrosistema de las principales especies arbóreas de la región chaqueña argentina. Forest Systems 7:53-71.

Moyano, J., M. A. Rodríguez‐Cabal., and M. A. Núñez. 2020. Highly invasive tree species are more dependent on mutualisms. Ecology 101(5):e02997. https://doi.org/10.1002/ecy.2997.

Núñez, M. A., and I. A. Dickie. 2014. Invasive belowground mutualists of woody plants. Biological Invasions 16:645-661. https://doi.org/10.1007/s10530-013-0612-y.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, and H. Wagner. 2019. Package ‘vegan’: Community Ecology Package. R package version 2:5-6.

Pyšek, P., V. Jarošík, P. E Hulme, J. Pergl, M. Hejda, U. Schaffner, and M. Vilà. 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Global Change Biology 18:1725-1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x.

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/.

Redecker D., A. Schüßler, H. Stockinger, S. L. Stürmer, J. B. Morton, and C. Walker. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515-531. https://doi.org/10.1007/s00572-013-0486-y.

Reinhart, K. O., and R. M. Callaway. 2006. Soil biota and invasive plants. New Phytologist 170:445-457. https://doi.org/10.1111/j.1469-8137.2006.01715.x.

Richardson, D. M., C. Hui, M. A. Núñez, and A. Pauchard. 2014. Tree invasions: patterns, processes, challenges and opportunities. Biological Invasions 16:473-81. https://doi.org/10.1007/s10530-013-0606-9.

Richardson, D. M., P. Pyšek, M. Rejmánek, M. G. Barbour, F. D. Panetta, and C. J. West. 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversity and distributions 6:93-107. https://doi.org/10.1046/j.1472-4642.2000.00083.x.

Río, M. E., and L. Achával. 1904. Geografía de la Provincia de Córdoba.

Roberts, D. W. 2016. labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.8-0.

Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. LeRoy Poff, M. T. Sykes, B. H. Walker, M. Walker, and D. H. Wall. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770-1774. https://doi.org/10.1126/science.287.5459.1770.

Scheublin, T. R., R. S. van Logtestijn, and M. G. van Der Heijden. 2007. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. Journal of Ecology 95:631-638. https://doi.org/10.1111/j.1365-2745.2007.01244.x.

Schüßler, A., and C. Walker. 2010. The Glomeromycota: a species list with new families and new genera. Gloucester, in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich and Oregon State University.

Sharmah, D., and D. K Jha. 2014. Diversity of arbuscular mycorrhizal fungi in disturbed and undisturbed forests of Karbi Anglong Hills of Assam, India. Agricultural Research 3:229-238. https://doi.org/10.1007/s40003-014-0110-1.

Sikes, B. A., K. Cottenie, and J. N. Klironomos. 2009. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. Journal of Ecology 97:1274-1280. https://doi.org/10.1111/j.1365-2745.2009.01557.x.

Smith, S. E., and D. J. Read. 2008. Mycorrhizal symbiosis. 3rd. Academic Press, New York.

Sparks, D. L. 1996. Methods of soil analysis. Part 3. Chemical methods. ASA, SSSA, CSSA, Madison, WI. https://doi.org/10.2136/sssabookser5.3.

Tecco, P. A., C. Urcelay, S. Díaz, M. Cabido, and N. Pérez‐Harguindeguy. 2013. Contrasting functional trait syndromes underlay woody alien success in the same ecosystem. Austral Ecology 38:443-451. https://doi.org/10.1111/j.1442-9993.2012.02428.x.

Treseder, K. K. 2004. A meta‐analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytologist 164:347-355. https://doi.org/10.1111/j.1469-8137.2004.01159.x.

Urcelay, C., S. Díaz, D. E. Gurvich, F. S. Chapin III, E. Cuevas, and L. S. Domínguez. 2009. Mycorrhizal community resilience in response to experimental plant functional type removals in a woody ecosystem. Journal of Ecology 97:1291-1301. https://doi.org/10.1111/j.1365-2745.2009.01582.x.

Urcelay, C., S. Longo, J. Geml, and P. A. Tecco. 2019. Can arbuscular mycorrhizal fungi from non-invaded montane ecosystems facilitate the growth of alien trees? Mycorrhiza 29:39-49. https://doi.org/10.1007/s00572-018-0874-4.

Yang, H., Z. Yanyan, Y. Yongge, T. Jianjun, and C. Xin. 2012. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: Evidence from ITS rDNA sequence metadata. Evolutionary Biology 12:50. https://doi.org/10.1186/1471-2148-12-50.

Yang, H., J. Xu, Y. Guo, R. T. Koide, Y. Dai, M. Xu, L. Biand, X. Bia, and Q. Zhang. 2016. Predicting plant response to arbuscular mycorrhizas: the role of host functional traits. Fungal Ecology 20:79-83. https://doi.org/10.1016/j.funeco.2015.12.001.

Zeballos, S. R., M. A. Giorgis, A. M. Cingolani, M. Cabido, J. I. Whitworth Hulse, and D. E. Gurvich. 2014. Do alien and native tree species from Central Argentina differ in their water transport strategy? Austral Ecology 39:984-991. https://doi.org/10.1111/aec.12171.

Zhang, Q., R. Yang, J. Tang, H. Yang, S. Hu, and X. Chen. 2010. Positive feedback between mycorrhizal fungi and plants influences plant invasion success and resistance to invasion. PLoS ONE 5(8). https://doi.org/10.1371/journal.pone.0012380.

El “siempreverde” (Ligustrum lucidum), ¿Altera la composición de las comunidades de hongos micorrícicos arbusculares en el Chaco Serrano?
Publicado
2020-07-03