Daño, producción de semillas y persistencia del hongo endófito Epichloë occultans en plantas de Lolium multiflorum bajo un ataque de herbívoros lepidópteros y contaminación por ozono

  • Pedro E. Gundel IFEVA - Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires / CONICET.
  • Fernando Biganzoli Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires.
  • Priscila P. Freitas Ministry for Primary Industries, Charles Fergusson Building, Wellington, New Zealand.
  • Jennifer B. Landesmann Laboratorio Ecotono, INIBIOMA - Universidad Nacional del Comahue, CONICET. Bariloche, Río Negro, Argentina.
  • M. Alejandra Martínez-Ghersa IFEVA - Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires / CONICET.
  • Claudio M. Ghersa IFEVA - Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires / CONICET.
Palabras clave: simbiosis, mutualismo defensivo, simbiosis pasto-endófito, resistencia, tolerancia

Resumen

Las plantas enfrentan nuevos desafíos debido al cambio global impulsado por las actividades humanas. Mientras los brotes de plagas y la incidencia de contaminantes están en aumento, las plantas pueden mejorar su tolerancia al estrés asociándose con microorganismos. Ciertas gramíneas establecen simbiosis persistentes y asintomáticas con endófitos fúngicos Epichloë, y así obtienen protección contra herbívoros y tolerancia al estrés abiótico. No obstante, los resultados de la simbiosis dependen del contexto ecológico. Evaluamos la capacidad del hongo endófito E. occultans para proteger el pasto anual Lolium multiflorum contra un ataque de larvas del herbívoro generalista Agrotis ipsilon bajo exposición episódica de las plantas al ozono. Cultivamos plantas simbióticas y no-simbióticas en macetas y las expusimos a ozono en diferentes etapas, resultando en cuatro tratamientos: control (nunca expuesta al ozono), planta expuesta al ozono en etapa vegetativa, planta expuesta al ozono en etapa reproductiva y planta expuesta al ozono en ambas etapas. Luego, hubo un brote de larvas de A. ipsilon. Evaluamos el daño causado por las larvas, la producción de semillas por planta y la transmisión del endófito a las semillas. La frecuencia de plantas atacadas fue independiente de la presencia del endófito y del ozono. Sin embargo, el nivel de daño por planta sólo fue afectado y reducido por el endófito. La producción de semillas fue ligeramente menor en las plantas con endófito y no afectada por el ozono. Curiosamente, las plantas simbióticas dañadas y no-dañadas presentaron igual producción de semillas. No obstante, las plantas no-simbióticas no-dañadas produjeron más semillas que las dañadas cuando fueron expuestas una vez a ozono en etapa vegetativa o reproductiva. El ozono no afectó la eficiencia de transmisión de los endófitos a las semillas, la cual fue, en promedio, 95%. El ozono, en dosis medias, parece tener efectos indetectables sobre la simbiosis planta-endófito.

Biografía del autor/a

Pedro E. Gundel, IFEVA - Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires / CONICET.

Investigador Independiente CONICET

Citas

Ashmore, M. R., and J. N. B. Bell. 1991. The role of ozone in global change. Annals of Botany 67:39-48. https://doi.org/10.1093/oxfordjournals.aob.a088207.

Azevedo, J. L., W. Maccheroni Jr., J. O. Pereira, and W. Luiz de Araújo. 2000. Endophytic microorganisms: a review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology 3(1):1-26. https://doi.org/10.2225/vol3-issue1-fulltext-4.

Baldauf, M. W., W. J. Mace, and D. S. Richmond. 2011. Endophyte-mediated resistance to black cutworm as a function of plant cultivar and endophyte strain in tall fescue. Environmental Entomology 40:639-647. https://doi.org/10.1603/EN09227.

Bastias, D. A., A. C. Ueno, C. R. Machado-Assefh, A. E. Álvarez, C. A. Young, and P. E. Gundel. 2017b. Metabolism or behavior: explaining the performance of aphids on alkaloid-producing fungal endophytes in annual ryegrass (Lolium multiflorum). Oecologia 185:245-256. https://doi.org/10.1007/s00442-017-3940-2.

Bastias, D. A., M. A. Martínez-Ghersa, C. L. Ballaré, and P. E. Gundel. 2017a. Epichloë fungal endophytes and plant defenses: Not just alkaloids. Trends in Plant Science 22(11):939-948. https://doi.org/10.1016/j.tplants.2017.08.005.

Bastías, D. A., M. A. Martínez-Ghersa, J. A. Newman, S. D. Card, W. J. Mace, and P. E. Gundel. 2018. Jasmonic acid regulation of the anti-herbivory mechanism conferred by fungal endophytes in grasses. Journal of Ecology 106:2365-2379. https://doi.org/10.1111/1365-2745.12990.

Bixby, A. J., and D. A. Potter. 2010. Influence of endophyte (Neotyphodium lolii) infection of perennial ryegrass on susceptibility of the black cutworm (Lepidoptera: Noctuidae) to a baculovirus. Biological Control 54:141-146. https://doi.org/10.1016/j.biocontrol.2010.04.003.

Booker, F., R. Muntifering, M. McGrath, K. Burkey, D. Decoteau, E. Fiscus, W. Manning, S. Krupa, A. Chappelka, and D. Grantz. 2009. The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 51:337-351. https://doi.org/10.1111/j.1744-7909.2008.00805.x.

Brosi, G. B., R. L. McCulley, L. P. Bush, J. A. Nelson, A. T. Classen, and R. J. Norby. 2011. Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytologist 189:797-805. https://doi.org/10.1111/j.1469-8137.2010.03532.x.

Card, S. D., M. P. Rolston, Z. Park, N. Cox, and D. E. Hume. 2011. Fungal endophyte detection in pasture grass seed utilising the infection layer and comparison to other detection techniques. Seed Science and Technology 39:581-592. https://doi.org/10.15258/sst.2011.39.3.05.

Cheplick, G. P., and R. Cho. 2003. Interactive effects of fungal endophyte infection and host genotype on growth and storage in Lolium perenne. New Phytologist 158:183-191. https://doi.org/10.1046/j.1469-8137.2003.t01-1-00723.x. https://doi.org/10.1046/j.1469-8137.2003.00723.x.

Clay, K., and C. Schardl. 2002. Evolutionary origin and ecological consequences of endophyte symbiosis with grasses. American Naturalist 160:S99-S127. https://doi.org/10.1086/342161.

Dai, A. 2011. Drought under global warming: a review. WIREs Climate Change 2:45-65. https://doi.org/10.1002/wcc.81.

Davitt, A. J., C. Chen, and J. A. Rudgers. 2011. Understanding context-dependency in plant-microbe symbiosis: The influence of abiotic and biotic contexts on host fitness and the rate of symbiont transmission. Environmental and Experimental Botany 71:137-145. https://doi.org/10.1016/j.envexpbot.2010.11.004.

de Sassi, C., and J. M. Tylianakis. 2012. Climate change disproportionately increases herbivore over plant or parasitoid biomass. PLoS ONE 7:e40557. https://doi.org/10.1371/journal.pone.0040557.

Faeth, S. H. 2009. Asexual fungal symbionts alter reproductive allocation and herbivory over time in their native perennial grass hosts. American Naturalist 173(5):554-565. https://doi.org/10.1086/597376.

Fieller, E. C. 1940. The biological standardization of Insulin. Supplement to the Journal of the Royal Statistical Society 7:1-64. https://doi.org/10.2307/2983630.

Finch, S. C., C. G. L. Pennell, J. W. F. Kerby, and V. M. Cave. 2016. Mice find endophyte-infected seed of tall fescue unpalatable - implications for the aviation industry. Grass and Forage Science 71(4):659-666. https://doi.org/10.1111/gfs.12203.

Fiscus, E. L., F. L. Booker, and K. O. Burkey. 2005. Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant, Cell and Environment 28:997-1011. https://doi.org/10.1111/j.1365-3040.2005.01349.x.

Fox, J., and S. Weisberg. 2011. An {R} companion to applied regression. Thousand Oaks, California, USA, Sage.

Fuchs, B., and J. Krauss. 2019. Can Epichloë endophytes enhance direct and indirect plant defense? Fungal Ecology 38:98-103. https://doi.org/10.1016/j.funeco.2018.07.002.

Fuhrer, J. 2003. Agroecosystem response to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems and Environment 97:1-20. https://doi.org/10.1016/S0167-8809(03)00125-7.

Gagic, M., M. J. Faville, W. Zhang, N. T. Forester, M. P. Rolston, R. D. Johnson, S. Ganesh, J. P. Koolaard, H. S. Easton, D. Hudson, L. J. Johnson, C. D. Moon, and C. R. Voisey. 2018. Seed transmission of Epichloë endophytes in Lolium perenne is heavily influenced by host genetics. Frontiers in Plant Science 9:1580. https://doi.org/10.3389/fpls.2018.01580.

Gundel, P. E., J. A. Rudgers, and C. M. Ghersa. 2011. Incorporating the process of vertical transmission into understanding of host-symbiont dynamics. Oikos 120:1121-1128. https://doi.org/10.1111/j.1600-0706.2011.19299.x.

Gundel, P. E., L. A. Garibaldi, M. Helander, and K. Saikkonen. 2013b. Symbiotic interactions as drivers of trade-offs in plants: effects of fungal endophytes on tall fescue. Fungal Diversity 60(1):5-14. https://doi.org/10.1007/s13225-013-0224-y.

Gundel, P. E., L. I. Pérez, M. Helander, and K. Saikkonen. 2013a. Symbiotically modified organisms: nontoxic fungal endophytes in grasses. Trends in Plant Science 18:420-427. https://doi.org/10.1016/j.tplants.2013.03.003.

Gundel, P. E., M. A. Martínez-Ghersa, M. Omacini, R. Cuyeu, E. Pagano, R. Ríos, and C. M. Ghersa. 2012. Mutualism effectiveness and vertical transmission of symbiotic fungal endophytes in response to host genetic background. Evolutionary Applications 5:838-849. https://doi.org/10.1111/j.1752-4571.2012.00261.x.

Gundel, P. E., W. B. Batista, M. Texeira, M. A. Martínez-Ghersa, M. Omacini, and C. M. Ghersa. 2008. Neotyphodium endophyte infection frequency in annual grass populations: relative importance of mutualism and transmission efficiency. Proceedings of The Royal Society B Biological Science 275:897-905. https://doi.org/10.1098/rspb.2007.1494.

Hamilton, C. E., P. E. Gundel, M. Helander, and K. Saikkonen. 2012. Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Diversity 54:1-10. https://doi.org/10.1007/s13225-012-0158-9.

Handayani, V. D. S., Y. Tanno, M. Yamashita, H. Tobina, M. Ichihara, Y. Ishida, and H. Sawada. 2017. Influence of weed management measures on glyphosate resistance and endophyte infection in naturalized Italian ryegrass (Lolium multiflorum). Weed Biology and Management 17:84-90. https://doi.org/10.1111/wbm.12122.

Heagle, A. S., J. E. Miller, F. L. Booker, and W. A. Pursley. 1999. Ozone stress, carbon dioxide enrichment, and nitrogen fertility Interactions in cotton. Crop Science 39:731-741. https://doi.org/10.2135/cropsci1999.0011183X003900030021x.

Hansen, E. M. Ø., H. Hauggaard-Nielsen, M. Launay, P. Rose, and T. N. Mikkelsen. 2019. The impact of ozone exposure, temperature and CO2 on the growth and yield of three spring wheat varieties. Environmental and Experimental Botany 168:103868. https://doi.org/10.1016/j.envexpbot.2019.103868.

Hogsett, W. E., D. T. Tingey, and S. R. Holman. 1985. A programmable exposure control system for determination of the effects of pollutant exposure regimes on plant growth. Atmospheric Environment 19:1135-1145. https://doi.org/10.1016/0004-6981(85)90198-2.

Holopainen, J. K. 2002. Aphid response to elevated ozone and CO2. Entomologia Experimentalis et Applicata 104:137-142. https://doi.org/10.1046/j.1570-7458.2002.01000.x.

IPCC. 2014: Summary for Policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Pp. 1-32 in C. B. Field, V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea and L. L. White (eds.). Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

ISTA. 1999. International rules for seed testing. Seed Science and Technology 27(Suppl.):1-333.

Johnson, L. J., A. C. M. de Bonth, L. R. Briggs, J. R. Caradus, S. C. Finch, D. J. Fleetwood, L. R. Fletcher, D. E. Hume, R. D. Johnson, A. J. Popay, B. A. Tapper, W. R. Simpson, C. R. Voisey, and S. D. Card. 2013. The exploitation of epichloae endophytes for agricultural benefit. Fugal Diversity 60:171-188. https://doi.org/10.1007/s13225-013-0239-4.

Kiers, E. T., T. M. Palmer, A. I. Ives, J. Bruno, and J. L. Bronstein. 2010. Mutualisms in a changing world: an evolutionary perspective. Ecology Letters 13:1459-1474. https://doi.org/10.1111/j.1461-0248.2010.01538.x.

Kuldau, G., and C. W. Bacon. 2008. Clavicipitaceous endophytes: Their ability to enhance resistance of grasses to multiple stresses. Biological Control 46:57-71. https://doi.org/10.1016/j.biocontrol.2008.01.023.

Kunkel, B. A., and P. S. Grewal. 2003. Endophyte infection in perennial ryegrass reduces the susceptibility of black cutworm to an entomopathogenic nematode. Entomologia Experimentalis et Applicata 107:95-104. https://doi.org/10.1046/j.1570-7458.2003.00048.x.

Latch, G. C. M., and M. J. Christensen. 1985. Artificial infection of grasses with endophytes. Annals of Applied Biology 107:17-24. https://doi.org/10.1111/j.1744-7348.1985.tb01543.x.

Leuchtmann, A., C. W. Bacon, C. L. Schardl, J. F. White Jr., and M. Tadych. 2014. Nomenclatural realignment of Neotyphodium species with genus Epicholë. Mycologia 106:202-215. https://doi.org/10.3852/13-251.

Li, T., J. D. Blande, P. E. Gundel, M. Helander, and K. Saikkonen. 2014. Epichloë endophytes alter inducible indirect defences in host grasses. PLoS ONE 9(6):e101331. https://doi.org/10.1371/journal.pone.0101331.

Lindroth, R. L. 2010. Impacts of elevated atmospheric CO2 and O3 on forests: phytochemistry, trophic interactions, and ecosystem dynamics. Journal of Chemical Ecology 36:2-21. https://doi.org/10.1007/s10886-009-9731-4.

Malinowski, D. P., and D. P. Belesky. 2000. Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance. Crop Science 40:923-940. https://doi.org/10.2135/cropsci2000.404923x.

Martínez-Ghersa, M. A., and S. R. Radosevich. 2009. Lolium multiflorum density responses under ozone and herbicide stress. Austral Ecology 34:889-900. https://doi.org/10.1111/j.1442-9993.2009.01995.x.

Mauzerall, D. L., and X. Wang. 2001. Protecting agricultural crops from the effects of tropospheric ozone exposure: reconciling science and standard setting in the United States, Europe, and Asia. Annu Rev Energy Environ 26:237-268. https://doi.org/10.1146/annurev.energy.26.1.237.

Menéndez, A. I., A. M. Romero, A. M. Folcia, and M. A. Martínez-Ghersa. 2009. Getting the interactions right: Will higher O3 levels interfere with induced defenses to aphid feeding? Basic and Applied Ecology 10:255-264. https://doi.org/10.1016/j.baae.2008.03.010.

Mikkelsen, B. L., R. B. Jørgensen, and M. F. Lyngkjær. 2015. Complex interplay of future climate levels of CO2, ozone and temperature on susceptibility to fungal diseases in barley. Plant Pathology 64:319-327. https://doi.org/10.1111/ppa.12272.

Miranda, M. I., M. Omacini, and E. J. Chaneton. 2011. Environmental context of endophyte symbioses: interacting effects of water stress and insect herbivory. International Journal of Plant Sciences 172:499-508. https://doi.org/10.1086/658921.

Moon, C. D., B. Scott, C. L. Schardl, and M. J. Christensen. 2000. The evolutionary origins of Epichloë endophytes from annual ryegrasses. Mycologia 92:1103-1118. https://doi.org/10.2307/3761478. https://doi.org/10.1080/00275514.2000.12061258.

R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria, R Foundation for Statistical Computing. Available at https://www.r-project.org/ (accessed September 2016).

Rudgers, J. A., M. E. Afkhami, M. A. Rúa, A. J. Davitt, S. Hammer, and V. M. Huguet. 2009. A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology 90:1531-1539. https://doi.org/10.1890/08-0116.1.

Saikkonen, K., P. E. Gundel, and M. Helander. 2013. Chemical ecology mediated by fungal endophytes in grasses. Journal of Chemical Ecology 39:962-968. https://doi.org/10.1007/s10886-013-0310-3.

Sandermann, H., D. Ernst, W. Heller, and C. Langerbartels. 1998. Ozone: an abiotic elicitor of plant defence reactions. Trends in Plant Science 3:47-50. https://doi.org/10.1016/S1360-1385(97)01162-X.

Schardl, C. L. 2010. The Epichloae, Symbionts of the grass subfamily Poöideae. Annals of the Missouri Botanical Garden 97:646-665. https://doi.org/10.3417/2009144.

Thomson, L. J., S. Macfadyen, and A. A. Hoffmann. 2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control 52:296-306. https://doi.org/10.1016/j.biocontrol.2009.01.022.

U.S. EPA. 2016. Air Quality Criteria for Ozone and Related Photochemical Oxidants. U.S. Environmental Protection Agency, Washington, DC. EPA/600/R-05/004aF-cF, 2006.

Ueno, A., P. E. Gundel, M. Omacini, C. M. Ghersa, L. P. Bush, and M. A. Martínez-Ghersa. 2016. Mutualism effectiveness of fungal endophyte in grasses is reduced by ozone. Functional Ecology 30:226-234. https://doi.org/10.1111/1365-2435.12519.

Ueno, A. C., P. E. Gundel, C. E. Seal, C. M. Ghersa, and M. A. Martínez-Ghersa. 2020. The negative effect of a vertically-transmitted fungal endophyte on seed longevity is stronger than that of ozone transgenerational effect. Environmental and Experimental Botany, https://doi.org/10.1016/j.envexpbot.2020.104037.

Valkama, E., J. Koricheva, and E. Oksanen. 2007. Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Global Change Biology 13:184-201. https://doi.org/10.1111/j.1365-2486.2006.01284.x.

Vila-Aiub, M. M., and C. M. Ghersa. 2001. The role of fungal endophyte infection in the evolution of Lolium multiflorum resistance to diclofopmethyl. Weed Research 41:265-274. https://doi.org/10.1046/j.1365-3180.2001.00236.x.

Vila-Aiub, M. M., M. A. Martínez-Ghersa, and C. M. Ghersa. 2003. Evolution of herbicide resistance in weeds: vertically transmitted fungal endophytes as genetic entities. Evolutionary Ecology 17:441-456. https://doi.org/10.1023/B:EVEC.0000005580.19018.fb.

Vila-Aiub, M. M., P. E. Gundel, and C. M. Ghersa. 2005. Fungal endophyte infection changes growth attributes in Lolium multiflorum Lam. Austral Ecology 30:49-57. https://doi.org/10.1111/j.1442-9993.2005.01423.x.

Williamson, R. C., and D. A. Potter. 1997. Turfgrass species and endophyte effects on survival, development, and feeding preference of black cutworms (Lepidoptera: Noctuidae). Journal of Economic Entomology 90:1290-1299. https://doi.org/10.1093/jee/90.5.1290.

Yamashita, M., M. Iwamoto, K. Maruyama, M. Ichihara, and H. Sawada. 2010. Contrasting infection frequencies of Neotyphodium endophyte in naturalized Italian ryegrass populations in Japanese farmlands. Grassland Science 56:71-76. https://doi.org/10.1111/j.1744-697X.2010.00177.x.

Zhang, W., W. J. Mace, C. Matthew, and S. D. Card. 2019. The impact of endophyte infection, seed aging, and imbibition on selected sugar metabolite concentrations in seed. J Agric Food Chem 67:6921-6929. https://doi.org/10.1021/acs.jafc.9b01618.

Plant damage, seed production and persistence of the fungal endophyte Epichloë occultans in Lolium multiflorum plants under an herbivore lepidopteran attack and ozone pollution
Publicado
2020-07-14