Evaluación del déficit de bosques de ribera en Tucumán

  • Edgardo J. I. Pero Instituto de Biodiversidad Neotropical. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Tucumán (UNT). Facultad de Ciencias Naturales e IML. San Miguel de Tucumán, Argentina.
  • Elvira Casagranda Instituto de Ecología Regional. CONICET - UNT. Yerba Buena, Tucumán, Argentina.
  • Luciana Cristobal Instituto de Biodiversidad Neotropical. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Tucumán (UNT). Facultad de Ciencias Naturales e IML. San Miguel de Tucumán, Argentina.
  • Aldana Wottitz Facultad de Ciencias Forestales. Universidad Nacional de Santiago del Estero. Santiago del Estero, Argentina.
  • Néstor I. Gasparri Instituto de Ecología Regional. CONICET - UNT. Yerba Buena, Tucumán, Argentina.
Palabras clave: vegetación de ribera, restauración ecológica, agricultura, gestión ambiental, zona de amortiguación

Resumen

Los bosques de ribera se encuentran entre los ecosistemas más vulnerables, y para mantener los servicios que brindan se necesita su restauración ecológica. El objetivo principal de nuestro trabajo fue generar un mapa de zonas ribereñas a fin de identificar bosques, áreas transformadas y oportunidades para restaurar estos ecosistemas en Tucumán, Argentina. Comparamos diferentes anchos de zonas de amortiguación (ZdA): según requisitos legales (60 m) y sugerencias científico-técnicas (100 y 250 m). Para explorar la superficie de unidades de producción agrícola (UPA, lotes catastrales) ubicadas en las ZdA analizamos diferentes regiones agroecológicas y porcentajes de superficie ocupada en las UPA. La cobertura del suelo se cartografió a partir de una clasificación supervisada de imágenes Sentinel en Google Earth Engine. Nuestros resultados revelaron que para alcanzar a cubrir los 60 y 250 m de ZdA se necesitaría restaurar entre 40 y 60% de las zonas ribereñas, respectivamente, en su mayoría bajo agricultura. Si se considera una ZdA de 60 m, las riberas se encuentran ocupadas por usos agrícolas y urbanos en 23.5% (1959 ha) en el pedemonte, 50.9% (7784 ha) en la llanura húmeda y 36.8% (3113 ha) en la llanura seca. Nuestros resultados sugieren que se deben realizar diferentes esfuerzos para restaurar de manera eficiente las distintas regiones agroecológicas. La restauración necesaria para cubrir el requisito legal podría ser una meta alcanzable considerando objetivos globales y regionales. La mayoría de las UPA incluyeron menos de 20% de su superficie en una zona ribereña. Sin embargo, se recomienda incorporar abordajes socio-ecológicos en los proyectos de restauración, a fin de conocer las visiones de los productores, proponer compensaciones y evitar restricciones que afecten la producción agrícola local. El mapeo realizado será una herramienta valiosa para implementar proyectos de restauración en un área prioritaria de la Argentina.

Biografía del autor/a

Edgardo J. I. Pero, Instituto de Biodiversidad Neotropical. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Tucumán (UNT). Facultad de Ciencias Naturales e IML. San Miguel de Tucumán, Argentina.

Becario posdoctoral con tema: análisis funcional y de servicios ecosistémicos de macroinvertebrados bentónicos y vegetación de ribera para estimar beneficios y compromisos de la restauración ecológica de los bosques de ribera de Tucumán.

Elvira Casagranda, Instituto de Ecología Regional. CONICET - UNT. Yerba Buena, Tucumán, Argentina.

becaria doctoral

Luciana Cristobal, Instituto de Biodiversidad Neotropical. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Tucumán (UNT). Facultad de Ciencias Naturales e IML. San Miguel de Tucumán, Argentina.

Carrera de Personal de Apoyo a la Investigación, especialista en SIG

Aldana Wottitz, Facultad de Ciencias Forestales. Universidad Nacional de Santiago del Estero. Santiago del Estero, Argentina.

Estudiante de grado de la Licenciatura en Ecología y Conservación de la FCF de la UNSE

Néstor I. Gasparri, Instituto de Ecología Regional. CONICET - UNT. Yerba Buena, Tucumán, Argentina.

Investigador Independiente

Citas

de Abelleyra, D., S. Banchero, S. Verón, J. Mosciaro, and J. Volante. 2019. Mapa Nacional de Cultivos Campaña 2018/2019. Colección 1, versión 1. Ministerio de Agricultura, Ganadería y Pesca, Instituto Nacional de Tecnología Agropecuaria (INTA), Presidencia de la Nación, Argentina. URL: tinyurl.com/yypxnzne.

Almeida, D. R. A., C. S. Stark, R. Chazdon, B. W. Nelson, R. G. Cesar, P. Meli, E. B. Gorgens, M. M. Duarte, R. Valbuena, V. S. Moreno, A. F. Mendes, N. Amazonas, N. B. Gonçalves, C. A. Silva, J. Schietti, and P. H. S. Brancalion. 2019. The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management 438:34-43. https://doi.org/10.1016/j.foreco.2019.02.002.

Aronson, J., J. N. Blignaut, and T. B. Aronson. 2017. Conceptual frameworks and references for landscape-scale restoration: reflecting back and looking forward. Ann Missouri Bot Gar 102:188-200. https://doi.org/10.3417/2017003.

Basualdo, M., N. Huykman, J. N. Volante, J. M. Paruelo, and G. Piñeiro. 2019. Lost forest? Ecosystems functional changes occurring after agricultural abandonment and forest recovery in the semiarid Chaco forest. Science of the Total Environment 650:1537-1546. https://doi.org/10.1016/j.scitotenv.2018.09.001.

Barral, M. P., J. M. Rey Benayas, P. Meli, and N. O. Maceira. 2015. Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: A global meta-analysis. Agriculture, Ecosystems and Environment 202:223-231. https://doi.org/10.1016/j.agee.2015.01.009.

Breiman, L. 2001. Random forest. Machine Learning 45:5-32. https://doi.org/10.1023/A:1010933404324. https://doi.org/10.1023/A:1017934522171.

Brown, A. D., H. R. Grau, L. R. Malizia, and A. Grau. 2001. Argentina. Pp. 623-659 en M. Kapelle and A. D. Brown (eds.). Bosques Nublados del Neotrópico. INBio. Heredia, Costa Rica.

Brown, A. D., and S. Pacheco. 2006. Propuesta de actualización del mapa ecorregional de la Argentina. Pp. 28-31 en A. Brown, U. Martínez Ortiz, M. Acerbi, and J. Corcuera (eds.). La situación ambiental argentina 2005. Fundación Vida Silvestre, Buenos Aires, Argentina.

Cabrera, A. L. 1976. Regiones fitogeográficas argentinas. Editorial ACME, Buenos Aires, Argentina.

Capon, S. J., L. E. Chambers, R. Mac Nally, R. J. Naiman, P. Davies, N. Marshall, J. Pittock, M. Reid, T. Capon, M. Douglas, J. Catford, D. S. Baldwin, M. Stewardson, J. Roberts, M. Parsons, and S. E. Williams. 2013. Riparian ecosystems in the 21th century: hotspot for climate change adaptation? Ecosystems 16:359-381. https://doi.org/10.1007/s10021-013-9656-1.

Congalton, R. G., and K. Green. 2008. Assessing the accuracy of remotely sensed data. Principles and practices. 2nd Edition, CRC Press, Florida, USA. https://doi.org/10.1201/9781420055139.

Díaz, A. M. 2018. Las inundaciones en la provincia de Tucumán: una problemática que se repite. Jornadas Platenses de Geografía y XX Jornadas de Investigación y Enseñanza de la Geografía, La Plata, 17-19 Octubre 2018. Universidad Nacional de La Plata, La Plata, Argentina.

Díaz Gómez, A. R., and F. J. Gaspari. 2017. Cambio de cobertura y uso de suelo en la zona ribereña en cuencas subtropicales del noroeste argentino. Quebracho 25(1,2):28-39.

ESA. 2015. Sentinel-2 User Handbook. Revision 2. ESA Standard Document. ESA, Paris.

Fernández, D. P., M. Baumann, G. Baldi, R. N. Banegas, S. Bravo, N. I. Gasparri, M. Lucherini, S. Marinaro, S. A. Nanni, J. A. Nasca, T. Tessi, and H. R. Grau. 2020. Grasslands and Open Savannas of the Dry Chaco. Pp. 562-576 en M. Goldstein and D. DellaSala (eds.). Encyclopedia of the World’s Biomes, 1a edición. Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.12094-9.

Foody, G. M. 2020. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment 239:111630. https://doi.org/10.1016/j.rse.2019.111630.

Gasparri, N. I. 2016. The transformation of Land-Use Competition in the Argentinean Dry Chaco Between 1975 and 2015. Pp. 59-73 en J. Niewöhner, A. Bruns, P. Hostert, T. Krueger, J. Ø. Nielsen, H. Haberl, C. Lauk, J. Lutz and D. Müller (eds.). Land Use Competition: Ecological, Economics and Social Perspectives. Springer, Berlin, Germany.

Gorelick, N., M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202:18-27. https://doi.org/10.1016/j.rse.2017.06.031.

Kutschker, A. M., G. Papazian, O. A. Martínez, and N. Ibañez. 2020. Calidad de los bosques ribereños y perspectivas de restauración en un río de la Patagonia Andina, Argentina. Ecología Austral 30:099-112. https://doi.org/10.25260/EA.20.30.1.0.928.

Lozano-Báez, S. E., M. Cooper, P. Meli, S. F. B. Ferraz, R. R. Rodrigues, and T. J. Sauer. 2019. Land restoration by tree planting in the tropics and subtropics improves soil infiltration, but some critical gaps still hinder conclusive results. Forest Ecology and Management 444:89-95. https://doi.org/10.1016/j.foreco.2019.04.046.

Macfarlane, W. W., C. M. McGinty, B. G. Laub, and S. J. Gifford. 2016. High-resolution riparian vegetation mapping to prioritize conservation and restoration in an impaired desert river. Restoration Ecology 25(3):333-341. https://doi.org/10.1111/rec.12425.

Meli, P., A. Calle, Z. Calle, C. I. Ortiz-Arrona, M. Sirombra, and P. H. S. Brancalion. 2019. Riparian-forest buffers: Bridging the gap between top-down and bottom-up restoration approaches in Latin America. Land Use Policy 87:104085. https://doi.org/10.1016/j.landusepol.2019.104085.

Minneti, J. L. 1999. Atlas climático del Noroeste Argentino. Laboratorio Climatológico sudamericano. Fundación Zon Caldenius, Tucumán, Argentina.

Naiman, R. J., H. Décamps, and M. E. McClain. 2005. Riparia. Ecology, Conservation and Management of Streamside Communities. Elsevier Academic Press. https://doi.org/10.1016/B978-012663315-3/50010-1.

Nanni, A. S., and H. R. Grau. 2017. Land-use redistribution compensated for ecosystem services losses derived from agricultural expansion, with mixed effects on biodiversity in a NW Argentina watershed. Forests 8(8):303. https://doi.org/10.3390/f8080303.

Olofsson, P., G. M. Foody, S. V. Stehman, and C. E. Woodcock. 2013. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sensing of Environment 129:122-131. https://doi.org/10.1016/j.rse.2012.10.031.

ONU (Organización de las Naciones Unidas). 2015. Transforming our world: the 2030 Agenda for sustainable development. A/RES/70/1. URL: tinyurl.com/z4o6pk4.

de Paz, M., M. Gobbi, and E. Raffaele. 2019. Revisión de las experiencias de revegetación con fines de restauración en bosques de la Argentina. Ecología Austral 29:194-207. https://doi.org/10.25260/EA.19.29.2.0.689.

Pérez, D., P. Meli, D. Renison, F. Barri, A. Beider, G. Burgueño, A. Dalmasso, S. Dardanelli, M. de Paz, F. Farinaccio, G. Papazian, M. Sirombra, and R. Torres. 2018. The argentine network of Ecological Restoration (REA): Progress gaps and future pathway. Ecología Austral 28:353-360. https://doi.org/10.25260/EA.18.28.2.0.659.

Pero, E. J. I., and P. Quiroga. 2019. Riparian and adjacent forests differ both in the humid mountainous ecoregion and the semiarid lowland. Plant Ecology 220(4):481-498. https://doi.org/10.1007/s11258-019-00929-w.

Pokrovsky, O. S. 2016. Riparian zones: characteristics, management practices and ecological impacts. Nova Science Publishers, New York, USA.

Pontius Jr., R. G., and M. Millones. 2011. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing 32(15):4407-4429. https://doi.org/10.1080/01431161.2011.552923.

Posthumus, H., J. R. Rouquette, J. Morris, D. J. G. Gowing, and T. M. Hess. 2010. A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England. Ecological Economics 69:1510-1523. https://doi.org/10.1016/j.ecolecon.2010.02.011.

Quantum GIS Development Team. 2014. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project. URL: qgis.osgeo.org.

Riis, T., M. Kelly-Quinn, F. C. Aguiar, P. Manolaki, D. Bruno, M. D. Bejarano, N. Clerici, M. R. Fernandes, J. C. Franco, N. Pettit, A. P. Portela, O. Tammeorg, P. Tammeorg, P. Rodríguez-González, and S. Dufour. 2020. Global Overview of ecosystem services provided by riparian vegetation. BioScience 70(6):501-514. https://doi.org/10.1093/biosci/biaa041.

Rodríguez-Galiano, V. F., B. Ghimire, J. Rogan, M. Chica-Olmo, and J. P. Rigol-Sánchez. 2012. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing 67:93-104. https://doi.org/10.1016/j.isprsjprs.2011.11.002.

Roulier, C., C. B. Anderson, S. A. Ballari, and E. A. Nielsen. 2020. Estudios sociales y socio-ecológicos sobre restauración ecológica: Una revisión de la literatura a escala global e iberoamericana. Ecología Austral 30:019-032. https://doi.org/10.25260/EA.20.30.1.0.940.

Schweizer, D., P. Meli, P. H. S. Brancalion, and M. R. Guariguata. 2019. Implementing forest landscape restoration in Latin America: Stakeholder perceptions and legal frameworks. Land Use Policy. https://doi.org/10.1016/j.landusepol.2019.104244.

Sirombra, M. G., and L. M. Mesa. 2012. A method for assessing the ecological quality of riparian forests in subtropical Andean streams: QBRy index. Ecological Indicators 20:324-331. https://doi.org/10.1016/j.ecolind.2012.02.021.

Soria, F. J., C. Fandos, P. Scandaliaris, and J. I. Carreras Baldrés. 2016. Relevamiento satelital de los principales cultivos de Tucumán (2014/2015). Avance Agroindustrial 37(1):1-37. URL: www.eeaoc.gob.ar/?publicacion=av-37-1-9.

Straccia, P. H., and M. L. Isla Raffaele. 2020. Leyes de presupuestos mínimos de protección ambiental. Sobre glaciares, humedales y la emergencia del carácter político de categorías despolitizadas. Ecología Austral 30:085-098. https://doi.org/10.25260/EA.20.30.1.0.971.

Strassburg, B. B. N., H. L. Beyer, R. Crouzeilles, A. Iribarrem, F. Barros, M. Ferreira de Siqueira, A. Sánchez-Tapia, A. Balmford, J. B. Barreto Sansevero, P. H. S. Brancalion, E. North Broadbent, R. L. Chazdon, A. Oliveira Filho, T. A. Gardner, A. Gordon, A. Latawiec, R. Loyola, J. P. Metzger, M. Mills, H. P. Possingham, R. Ribeiro Rodrigues, C. A. de Mattos Scaramuzza, F. R. Scarano, L. Tambosi, and M. Uriarte. 2019. Strategic approaches to restoring ecosystems can triple conservation gains and halve costs. Nature Ecology and Evolution 3:62-70. https://doi.org/10.1038/s41559-018-0743-8.

Suding, K., E. Higgs, M. Palmer, J. Baird Callicott, C. B. Anderson, M. Baker, J. J. Gutrich, K. M. Hondula, M. C. LeFevor, B. M. H. Larson, A. Randall, J. B. Ruhl, and K. Z. S. Schwartz. 2015. Committing to ecological restoration. Science 348(6235):638-640. https://doi.org/10.1126/science.aaa4216.

Tiwari, T., J. Lundström, L. Kuglerová, H. Laudon, K. Öhman, and A. M. Agren. 2016. Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths. Water Resources Research 52:1056-1069. https://doi.org/10.1002/2015WR018014.

Evaluación del déficit de bosques de ribera en Tucumán
Publicado
2020-11-16
Sección
Artículos