Metodología para derivar niveles guía para la protección de la biodiversidad acuática

  • Pablo M. Demetrio Centro de Investigaciones del Medioambiente (CIM), CONICET-UNLP. La Plata, Argentina
  • Fernando G. Iturburu Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET-UNMdP. Mar del Plata, Argentina
  • Pablo A. Collins Instituto Nacional de Limnología (INALI), CONICET-UNL. Santa Fe, Argentina
  • Mirta L. Menone Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET-UNMdP. Mar del Plata, Argentina
  • Andrés Venturino Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET-UNComa. Neuquén, Argentina
  • Pedro F. Temporetti Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNComa. San Carlos de Bariloche, Argentina
  • Fernando L. Pedrozo Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNComa. San Carlos de Bariloche, Argentina
  • María V. Amé Centro de Investigación en Bioquímica Clínica e Inmunología, CONICET-UNC. Córdoba, Argentina
  • Karina P. Quaini Ministerio de Ambiente y Desarrollo Sostenible de la Nación. CABA. Argentina
  • Alejandra Rodríguez Speroni Instituto Nacional del Agua. Ezeiza, Argentina
Palabras clave: calidad del agua, ecosistemas acuáticos, normativa, toxicidad, distribución de sensibilidad de especies, factores de seguridad, gestión, academia

Resumen

Las distintas actividades antrópicas (e.g., agropecuarias, urbanas e industriales) incorporan sustancias contaminantes a los ecosistemas acuáticos, pudiendo afectar directa o indirectamente a la biota que allí habita. La gestión de los recursos hídricos intenta incorporar criterios técnico-científicos para tomar decisiones que contribuyan a conservar y preservar dichos sistemas. En este contexto, la definición de niveles guía de calidad de agua surge como una herramienta para proteger la biota acuática. El objetivo del presente estudio es detallar la metodología de derivación de niveles guía para la protección de la biodiversidad acuática; esta metodología surge del grupo de trabajo Calidad del Agua y Niveles Guía para la Protección de la Biodiversidad Acuática, de la Red de Evaluación y Monitoreo de Ecosistemas Acuáticos (REM.AQUA-CONICET). En ella se incorporan abordajes empleados internacionalmente, utilizando una combinación de herramientas probabilísticas basadas en la distribución de sensibilidad de especies (SSD), como así también el uso de valores conservativos de concentraciones de efecto extrapoladas y asociadas con factores de seguridad, según corresponda a partir de los datos disponibles. La metodología detalla el tipo, la cantidad y la calidad de datos ecotoxicológicos a considerar para la derivación, los pasos a seguir y el diagrama de flujo asociado con las decisiones secuenciales para obtener el valor guía según la disponibilidad de información. La metodología contempla la generación de valores guía tipo A o B en función de la incertidumbre asociada a los criterios de obtención de tales valores. Se ejemplifica la metodología mediante el abordaje de la distribución de la sensibilidad de especies para la atrazina, y mediante factores de seguridad para el 2,4-D. Luego se discuten los alcances y las limitaciones de la metodología, con distintas consideraciones; entre ellas, las asociadas a la importancia de incorporar mayor cantidad de información de especies nativas de distintos ecosistemas del país.

Citas

Akaike, H. 1973. A new look at the statistical model identification. IEEE Trans Automat Control 19:716-723. https://doi.org/10.1109/TAC.1974.1100705.

Australian and New Zealand Environment and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand (ANZECC-ARMCANZ). 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. URL: tinyurl.com/k8uypjbs.

Autoridad Interjurisdiccional de las Cuencas de los Ríos Limay, Neuquén y Negro (AIC). 1996. Propuesta de Niveles Guías de Calidad para las Cuencas de los Ríos Limay, Neuquén y Negro.

Batley, G. E., R. A. Van Dam, M. S. J. Warne, J. C. Chapman, D. R. Fox, C. W. Hickey, and J. L. Stauber. 2014. Technical rationale for changes to the method for deriving Australian and New Zealand water quality guideline values for toxicants. Australian Government Standing Council on Environment and Water, Canberra, Australia.

Brack, W., V. Dulio, M. Ågerstrand, I. Allan, R. Altenburger, et al. 2017. Towards the review of the European Union Water Framework Directive: recommendations for more efficient assessment and management of chemical contamination in European surface water resources. Sci Total Environ 576:720-737. https://doi.org/10.1016/j.scitotenv.2016.10.104.

Burnham, K. P., and D. R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. Springer-Verlag. New York, New York, USA.

Canadian Council of Ministers of the Environment (CCME). 1989. Appendix V - Canadian water quality guidelines: Updates (September 1989), carbofuran, glyphosate, and atrazine. Task Force on Water Quality Guidelines, CCME, Canada.

Canadian Council of Ministers of the Environment (CCME). 2007. A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic Life. CCME, Canada. URL: tinyurl.com/tjrapkcs.

Carlson, A., W. Brungs, G. Chapman, and D. J. Hansen. 1984. Guidelines for deriving numerical aquatic site-specific water quality criteria by modifying national criteria. EPA/600/3-84/099 (NTIS PB85121101). United States Environmental Protection Agency, Washington DC, USA.

Chen, Y., S. Yu, S. Tang, Y. Li, H. Liu, X. Zhan, G. Su, B. Li, H. Yu, and J. P. Giesy. 2016. Site-specific water quality criteria for aquatic ecosystems: A case study of pentachlorophenol for Tai Lake, China. Sci Total Environ 541:65-73. https://doi.org/10.1016/j.scitotenv.2015.09.006.

Chèvre, N., and N. Vallotton. 2013. Pulse Exposure in Ecotoxicology. Pp. 917-926 in J. F. Férard and L. Blaise (eds.). Encyclopedia of Aquatic Ecotoxicology. Springer, Dordrecht, Holanda Meridional, Países Bajos. https://doi.org/10.1007/978-94-007-5704-2_84.

Clements, W. H., and M. C. Newman. 2003. Community Ecotoxicology. Wiley Press, New Jersey, USA. https://doi.org/10.1002/0470855150.

Código Administrativo del Estado de Ohio. 2014. Water Quality Standards, Chapter 3745-1. Ohio, USA.

Consejo Hídrico Federal (COHIFE). 2003. Principios Rectores de Política Hídrica de la República Argentina. Fundamentos del Acuerdo Federal del Agua. CABA, Argentina. URL: tinyurl.com/tjrapkcs.

Constitución de la Nación Argentina. 1994. Boletín Oficial, 23 de Agosto de 1994.

Decreto Provincial 1540/16, Provincia de Chubut. 2016. Reglamentación Parcial de la Ley XI N° 35 “Código Ambiental de la Provincia del Chubut”. Rawson, Chubut, Argentina.

Departamento de Asuntos del Agua y Silvicultura de Sudáfrica. 1996. South African Water Quality Guidelines, Vol. 7: Aquatic Ecosystems. First edition. Ciudad del Cabo, Sudáfrica. URL: tinyurl.com/wrc7ftjx.

Dirección General del Territorio Marítimo y Marina Mercante (DGTM y MM). 2020. Circular DGTM y MM Ordinario Nº A-52/008. Armada de Chile. Santiago, Chile.

European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC). 2014. Estimating toxicity thresholds for aquatic ecological communities from sensitivity distributions. Workshop Report No. 28. Amsterdam, Holanda Septentrional, Países Bajos.

Environment Canada. 1999. Guidance Document on Application and Interpretation of Single-Species Tests in Environmental Toxicology, Method Development and Application Section, Environmental Technology Centre, EPS 1/RM/34. Canada.

Estado de Mississippi. 2007. Water Quality Criteria for Intrastate and Interstate and Coastal Waters. Jackson, Mississippi, USA.

Forbes, V. E., P. Calow, and R. M. Sibly. 2001. Are current species extrapolation models a good basis for ecological risk assessment? Environ Toxicol Chem Int J 20(2):442-447. https://doi.org/10.1002/etc.5620200227.

Han, S., Y. Zhang, S. Masunaga, S. Zhou, and W. Naito. 2014. Relating metal bioavailability to risk assessment for aquatic species: Daliao River watershed, China. Environ Pollut 189:215-222. https://doi.org/10.1016/j.envpol.2014.02.023.

Hiki, K., and Y. Iwasaki. 2021. Can We Reasonably Predict Chronic Species Sensitivity Distributions from Acute Species Sensitivity Distributions? Environ Sci Technol 54:58. https://doi.org/10.1021/acs.est.0c03108.

Hose, G. C., and P. J. Van den Brink. 2004. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data. Arch Environ Contam Toxicol 47(4):511-520. https://doi.org/10.1007/s00244-003-3212-5.

Kooijman S. 1987. A safety factor for LC50 values allowing for differences in sensitivity among species. Water Res 21(3):269-276. https://doi.org/10.1016/0043-1354(87)90205-3.

Lepper, P. 2004. Manual of the methodological framework used to derive quality standards for priority substances of the water framework directive. Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME. URL: tinyurl.com/5dtjwr5y.

Liess, M., K. Foit, S. Knillmann, R. B. Schäfer, and H. D. Liess. 2016. Predicting the synergy of multiple stress effects. Sci Rep 6:32965. https://doi.org/10.1038/srep32965.

May, M., W. Drost, S. Germer, T. Juffernholz, and S. Hahn. 2016. Evaluation of acute-to-chronic ratios of fish and Daphnia to predict acceptable no-effect levels. Environ Sci Eur 28(1):16. https://doi.org/10.1186/s12302-016-0084-7.

Newman, M. C. 2015. Fundamentals of Ecotoxicology: the science of pollution. 4ta edición. CRC Press, Boca Ratón, Florida, USA.

Niveles Guía (NG) para la Cuenca del Plata. 2001. HYTSA Estudios y Proyectos S.A.

Nugegoda, D., and G. Kibria. 2013. Water quality guidelines for the protection of aquatic ecosystems. Pp. 1177-1195 in J. F. Férard and L. Blaise (eds.). Encyclopedia of Aquatic Ecotoxicology. Springer. Dordrecht, Holanda Meridional, Países Bajos. https://doi.org/10.1007/978-94-007-5704-2_105.

Organization for Economic Cooperation and Development (OECD). 1992. Report of the OECD workshop on the extrapolation of laboratory aquatic toxicity data to the real environment (OCDE=GD(92)169). Environment Directorate of the Organization for Economic Cooperation and Development, Paris, Francia.

Pennington, D. W. 2003. Extrapolating ecotoxicological measures from small data sets. Ecotoxicol Environ Saf 56(2):238-250. https://doi.org/10.1016/S0147-6513(02)00089-1.

Perazzolo, C., and E. Saouter. 2013. REACH Legislation in Ecotoxicology. Pp. 967-972 in J. F. Férard and L. Blaise (eds.). Encyclopedia of Aquatic Ecotoxicology. Springer, Dordrecht, Holanda Meridional, Países Bajos. https://doi.org/10.1007/978-94-007-5704-2_88.

Posthuma, L., G. W. Suter II, and T. P. Traas. 2002. Species sensitivity distribution in ecotoxicology. CRC Press LLC, Lewis Publishers, Boca Ratón, USA. https://doi.org/10.1201/9781420032314.

Rand, G. M. 1995. Fundamentals of Aquatic Toxicology: Effects, Environmental Fate and Risk Assessment CRC Press, Boca Ratón, Florida, USA.

Revenga, C., I. Campbell, R. Abell, P. De Villiers, and M. Bryer. 2005. Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philos Trans R Soc Lond B Biol Sci 360(1454):397-413. https://doi.org/10.1098/rstb.2004.1595.

Smith, E. P., and J. Cairns. 1993. Extrapolation methods for setting ecological standards for water quality: statistical and ecological concerns. Ecotoxicology 2:203-219. https://doi.org/10.1007/BF00116425.

Sorgog, K., and M. Kamo. 2019. Quantifying the precision of ecological risk: Conventional assessment factor method vs. species sensitivity distribution method. Ecotoxicol Environ Saf 183:109494. https://doi.org/10.1016/j.ecoenv.2019.109494.

Stephen C. E., D. I. Mount, D. J. Hansen, J. R. Gentile, G. A. Chapman, and W. A. Brungs. 2010. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection Of Aquatic Organisms and Their Uses. Federal Register PB85-227049. Office of Research and Development Environmental Research Laboratories, United States Environmental Protection Agency, USA.

Subsecretaría de Recursos Hídricos de la Nación (SSRH). 2002. Metodología para el establecimiento de niveles guía de calidad de agua ambiente para la protección de la biota acuática.

Subsecretaría de Recursos Hídricos de la Nación (SSRH). 2003. Desarrollos de niveles guía nacionales de calidad de agua ambiente correspondientes a atrazina.

Subsecretaría de Recursos Hídricos de la Nación (SSRH). 2005. Marco Conceptual para el establecimiento de niveles guía nacionales de calidad de agua ambiente.

Suter II, G. W., T. Traas, and L. Posthuma. 2002. Issues and practices in the derivation and use of species sensitivity distributions. Pp. 437-474 in L. Posthuma, G. W. Suter II and T. Traas (eds.). Species Sensitivity Distributions in Ecotoxicology. Lewis Publishers, Boca Ratón, Florida, USA. https://doi.org/10.1201/9781420032314.sec4.

Traas, T. P., D. van de Meent, L. Posthuma, T. Hamers, B. J. Kater, D. de Zwart, and T. Aldenberg. 2002. The potentially affected fraction as a measure of ecological risk. Pp. 315-344 in L. Posthuma, G. W. Suter II and T. Traas (eds.). Species Sensitivity Distributions in Ecotoxicology. Lewis Publishers, Boca Ratón, Florida, USA. https://doi.org/10.1201/9781420032314.ch16.

Umbuzeiro, G., S. Simone, A. Deus, L. Altafin, L. Veiga, et al. 2011. Protocolo para derivação de critérios de qualidade da água para proteção da vida aquática no Brasil. Critérios de qualidade da água (CQA). Limeira: Unicamp.

United States Environmental Protection Agency (USEPA) knowledgebase. 2020. URL: cfpub.epa.gov/ecotox.

Van Straalen, N. M., and C. A. J. Denneman. 1989. Ecotoxicological evaluation of soil quality criteria. Ecotoxicol Environ Saf 18:241-251. https://doi.org/10.1016/0147-6513(89)90018-3.

Wagner, C., and H. Løkke. 1991. Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Res 25(10):1237-1242. https://doi.org/10.1016/0043-1354(91)90062-U.

Warne, M. S. J. 2002. Derivation of the Australian and New Zealand water quality guidelines for toxicants. Australas J Ecotoxicol 7(2):123-136.

Zeeman, M. G. 1995. Ecotoxicity testing and estimation methods developed under Section 5 of the Toxic Substances Control Act (TSCA). Pp. 703-716 in G. M. Rand (ed.). Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment. Taylor and Francis, Washington DC, USA. https://doi.org/10.1201/9781003075363-27.

Metodología para derivar niveles guía para la protección de la biodiversidad acuática
Publicado
2021-08-09
Sección
Sección Especial