Variación de los caracteres foliares en comunidades vegetales del centro de la Argentina bajo diferentes condiciones climáticas y de uso del suelo

  • María V. Vaieretti Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto Multidisciplinario de Biología Vegetal, IMBIV. Córdoba, Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Córdoba, Argentina.
  • Melisa A. Giorgis Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto Multidisciplinario de Biología Vegetal, IMBIV. Córdoba, Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Córdoba, Argentina.
  • Ana M. Cingolani Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto Multidisciplinario de Biología Vegetal, IMBIV. Córdoba, Argentina.
  • Lucas Enrico Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto Multidisciplinario de Biología Vegetal, IMBIV. Córdoba, Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Córdoba, Argentina.
  • Paula A. Tecco Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto Multidisciplinario de Biología Vegetal, IMBIV. Córdoba, Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Córdoba, Argentina.
  • Diego E. Gurvich Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto Multidisciplinario de Biología Vegetal, IMBIV. Córdoba, Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Córdoba, Argentina.
  • Marcelo Cabido Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto Multidisciplinario de Biología Vegetal, IMBIV. Córdoba, Argentina.
  • Natalia Pérez Harguindeguy Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET. Instituto Multidisciplinario de Biología Vegetal, IMBIV. Córdoba, Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Córdoba, Argentina.
Palabras clave: área foliar específica, dureza foliar, espesor foliar, contenido de materia seca foliar, descomponibilidad, clima, bosques, pastizales, arbustales

Resumen

Los caracteres funcionales foliares de una comunidad resultan de las restricciones del ambiente para las plantas, impactando directamente sobre las propiedades y el funcionamiento de los ecosistemas. Evaluamos la variación de cinco caracteres en comunidades vegetales del centro de la Argentina, que se desarrollan bajo condiciones climáticas diferentes y que, a su vez, sufrieron cambios en su fisonomía debido al uso antrópico. Trabajamos en la provincia de Córdoba, en cuatro diferentes unidades fitogeográficas que categorizamos según su condición climática basada en el cálculo del índice de aridez, denominándolas ‘unidades climáticas’ 1, 2, 3 y 4, siguiendo un gradiente de menor a mayor temperatura y aridez. En cada unidad climática seleccionamos seis sitios localizados en dos fisonomías correspondientes a distinto grado de uso antrópico: tres bosques (menor uso) y tres pastizales/arbustales (mayor uso). Medimos cinco caracteres foliares (área foliar específica [AFE], contenido de materia seca foliar [CMSF], dureza foliar, espesor foliar y descomponibilidad) y calculamos la media ponderada de cada carácter para cada sitio. Las variaciones de los caracteres funcionales medidos estuvieron principalmente asociadas a las condiciones climáticas. También hubo un efecto del cambio fisonómico generado por el uso que dependió del contexto climático. En condiciones climáticas más frías y húmedas, la remoción de especies arbóreas genera comunidades dominadas por gramíneas, cuyos caracteres foliares son más conservadores (e.g., menor AFE, mayor dureza y menor descomponibilidad). Pero en condiciones más cálidas y secas, la remoción de especies arbóreas no generó cambios importantes en la estrategia funcional dominante, ya que éstas fueron reemplazadas por dicotiledóneas arbustivas y gramíneas de baja dureza foliar y relativamente alta descomponibilidad. Nuestros resultados muestran el efecto interactivo del clima y el usosobre las variaciones en los caracteres funcionales foliares y la complejidad en la capacidad de predicción sobre los efectos de tales variaciones en los procesos ecosistémicos.

Citas

Aerts, R. 1997. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439-49. https://doi.org/10.2307/3546886.

Agost, L. 2015. Cambio de la cobertura arbórea de la provincia de Córdoba: análisis a nivel departamental y de localidad (periodo 2000-2012). Revista de la Facultad de Ciencias Exactas, Físicas y Naturales 2:111-123. URL: tinyurl.com/v9742znu (Último acceso: 22/5/2021).

Arakaki, M., C. Pascal-Antoine, R. Nyffeler, A. Lendel, U. Eggli, R. M. Ogburn, E. Spriggs, M. J. Moore, and E. J. Edwards. 2011. Contemporaneous and recent radiations of the world's major succulent plant lineages. Proc Natl Acad Sci U.S.A 108:8379-8384. https://doi.org/10.1073/pnas.1100628108.

Askew, A. P. 2003. Leaf area measurement, version 1.3 University of Sheffield, UK.

Asner, G. P., A. J. Elmore, L. P. Olander, R. E. Martin, and A. T. Harris. 2004. Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261-299. https://doi.org/10.1146/annurev.energy.29.062403.102142.

Borgy, B., C. Violle, P. Choler, P. Denelle, F. Munoz, J. Kattge, S. Lavorel, J. Loranger, B. Amiaud, M. Bahn, P. M. van Bodegom, H. Brisse, G. Debarros, S. Diquelou, S. Gachet, C. Jolivet, S. Lemauviel-Lavenant, A. Mikolajczak, J. Olivier, J. Ordoñez, P. de Ruffray, N. Viovy, and E. Garnier. 2017. Plant community structure and nitrogen inputs modulate the climate signal on leaf traits. Global Ecol Biogeogr 26:1138-1152. https://doi.org/10.1111/geb.12623.

Buzzard, V., S. T. Michaletz, Y. Deng, Z. He, D. Ning, L. Shen, Q. Tu, J. D. Van Nostrand, J. W. Voordeckers, J. Wang, M. D. Weiser, M. Kaspari, R. B. Waide, J. Zhou, and B. J. Enquist. 2019. Continental scale structuring of forest and soil diversity via functional traits. Nat Ecol Evol 3:1298-1308. https://doi.org/10.1038/s41559-019-0954-7.

Cadisch, G., and K. E. Giller. 1997. Driven by nature: Plant litter quality and decomposition. Department of Biological Sciences Wye College, University of London, London.

Cabido, M., S. R. Zeballos, M. Zak, M. L. Carranza, M. A. Giorgis, J. J. Cantero, and A. T. R. Acosta. 2018. Native woody vegetation in central Argentina: Classification of Chaco and Espinal forests. Appl Veg Sci 21:298-311. https://doi.org/10.1111/avsc.12369.

Cabrera, A. L. 1976. Regiones fitogeográficas de Argentina. Enciclopedia Argentina de Agricultura y Jardinería. Buenos Aires, Argentina: ACME.

Chapin, F. S. III, P. A. Matson, and H. A. Money. 2002. Principles of terrestrial ecosystem ecology. Springer-Verlag, New York. https://doi.org/10.1007/b97397.

Cingolani, A. M., M. R. Cabido, D. Renison, and V. Solís Neffa. 2003. Combined effects of environment and grazing on vegetation structure in Argentine granite grasslands. J Veg Sci 14:223-232. https://doi.org/10.1111/j.1654-1103.2003.tb02147.x.

Cingolani, A. M., D. Renison, M. R. Zak, and M. R. Cabido. 2004. Mapping vegetation in a heterogeneous mountain rangeland using Landsat data: an alternative method to define and classify land-cover units. Remote Sens Environ 92:84-97. https://doi.org/10.1016/j.rse.2004.05.008.

Cingolani, A. M., D. Renison, P. A. Tecco, D. E. Gurvich, and M. Cabido. 2008. Predicting cover types in a mountain range with long evolutionary grazing history: a GIS approach. J Biogeogr 35:538-551. https://doi.org/10.1111/j.1365-2699.2007.01807.x.

Colladon, L. 2002. Anuario pluviométrico 1999-2000. Cuenca del Río San Antonio. Sistema del Río Suquía - Provincia de Córdoba. Instituto Nacional del Agua y del Ambienten (INA) y Centro de Investigaciones de la Región Semiárida (CIRSA).

Conti, G., L. Enrico, P. Jaureguiberry, A. Cuchietti, M. L. Lipoma, and D. Cabrol. 2018. El rol de la diversidad funcional en la provisión de múltiples servicios ecosistémicos: Un análisis empírico en el Chaco seco de Córdoba, Argentina central. Ecosistemas 27:60-74.

Cornelissen, J. H. C. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573e582. https://doi.org/10.2307/2261479.

Cornelissen, J. H. C., N. Pérez-Harguindeguy, S. Díaz, J. P. Grime, B. Marzano, M. Cabido, F. Vendramini, and B. Cerabolini.1999. Leaf structure and defense control litter decomposition rate across species and life forms in regional floras on two continents. New Phytol 143:191-200. https://doi.org/10.1046/j.1469-8137.1999.00430.x.

Cornelissen, J. H. C., S. Lavorel, E. Garnier, S. Díaz, N. Buchmann, D. E. Gurvich, P. B. Reich, H. ter Steege, H. D. Morgan, M. G. A. van der Heijden, J. G. Pausas, and H. Poorter. 2003. A handbook of protocols for standarised and easy measurement of plant functional traits worldwide. Australian J Bot 51:335-380. https://doi.org/10.1071/BT02124.

Cornwell, W. K., J. H. C. Cornelissen, K. Amatangelo, E. Dorrepaal, V. T Eviner, O. Godoy, S. E. Hobbie, B. Hoorens, H. Kurokawa, N. Pérez-Harguindeguy, H. M Quested, L. S Santiago, D. A Wardle, I. J. Wright, R. Aerts, S. D Allison, P. van Bodegom, V. Brovkin, A. Chatain, T. V. Callaghan, S. Díaz, E. Garnier, D. E. Gurvich, E. Kazakou, J. A. Klein, J. Read, P. B. Reich, N. A. Soudzilovskaia, M. V. Vaieretti, M. Westoby. 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065-1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x.

De Fina, A. L. 1992. Aptitud agroclimática de la República Argentina. Academia Nacional de Agronomía y Veterinaria, Buenos Aires.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, and M. Tablada. 2013. InfoStat versión 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL: infostat.com.ar.

Díaz, S., and M. Cabido. 1997. Plant functional types and ecosystem function in response to global change: a multiscale approach. J Veg Sci 8:463e474. https://doi.org/10.1111/j.1654-1103.1997.tb00842.x.

Díaz, S., M. Cabido, M. Zak, E. Martínez-Carretero, and J. Araníbar. 1999. Plant functional traits, ecosystem structure, and land-use history along a climatic gradient in central-western Argentina. J Veg Sci 10:651-660. https://doi.org/10.2307/3237080.

Díaz, S., J. G. Hodgson, K. Thompson, M. Cabido, J. H. C. Cornelissen, et al. 2004. The plant traits that drive ecosystems: Evidence from three continents. J Veg Sci 15:295-304. https://doi.org/10.1658/1100-9233(2004)015[0295:TPTTDE]2.0.CO;2.

Díaz, S., J. Kattge, J. H. C. Cornelissen, I. J. Wright, S. Lavorel, S. Dray, B. Reu, M. Kleyer, C. Wirth, I. C. Prentice, E. Garnier, G. Bönisch, M. Westoby, H. Poorter, P. B. Reich, A. T. Moles, J. Dickie, A. N. Gillison, A. E. Zanne, J. Chave, S. J. Wright, S. N. Sheremet’ev, H. Jactel, C. Baraloto, B. Cerabolini, S. Pierce, B. Shipley, D. Kirkup, F. Casanoves, J. S. Joswig, A. Günther, V. Falczuk, N. Rüger, M. D. Mahecha, and L. D. Gorné. 2016. The global spectrum of plant form and function. Nature 529:167-171. https://doi.org/10.1038/nature16489.

Dominy, N. J., P. J. Grubb, R. V. Jackson, P. W. Lucas, D. J. Metcalfe, J. -C. Svenning, and I. M. Turner. 2008. In tropical lowland rain forests monocots have tougher leaves than dicots, and include a new kind of tough leaf. Ann Bot 101:1363-1377. https://doi.org/10.1093/aob/mcn046.

Enrico L., S. Díaz, M. Westoby, and B. Rice. 2016. Leaf mechanical resistance in plant trait databases: comparing the results of two common measurement methods. Annals Bot 117:209-214. https://doi.org/10.1093/aob/mcv149.

Fortunel, C., E. Garnier, R. Joffre, E. Kazakou, H. Quested, K. Grigulis, S. Lavorel, P. Ansquer, H. Castro, P. Cruz, J. DoleŽal, O. Eriksson, H. Freitas, C. Golodets, C. Jouany, J. Kigel, M. Kleyer, V. Lehsten, J. Lepš, T. Meier, R. Pakeman, M. Papadimitriou, V. P. Papanastasis, F. Quétier, M. Robson, M. Sternberg, J. -P. Theau, A. Thébault, and M. Zarovali. 2009. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598-611. https://doi.org/10.1890/08-0418.1.

Garnier, E., J. Cortez, G. Billès, M. L. Navas, C. Roumet, M. Debussche, G. Laurent, A. Blanchard, D. Aubry, A. Bellmann, C. Neill, and J-P. Toussaint. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85:2630-2637. https://doi.org/10.1890/03-0799.

Giorgis, M. A., A. M. Cingolani, and M. Cabido. 2013. El efecto del fuego y las características topográficas sobre la vegetación y las propiedades del suelo en la zona de transición entre bosques y pastizales de las sierras de Córdoba, Argentina. Boletín de la Sociedad Argentina de Botánica 48:493-513. https://doi.org/10.31055/1851.2372.v48.n3-4.7555.

Giorgis, M. A., A. M. Cingolani, D. E. Gurvich, P. A. Tecco, J. Chiapella, F. Chiarini, and M. Cabido. 2017. Changes in floristic composition and physiognomy are decoupled along elevation gradients in central Argentina. Appl Veg Sci 20:558-571. https://doi.org/10.1111/avsc.12324.

Grigulis, K., S. Lavorel, U. Krainer, N. Legay, C. Baxendale, M. Dumont, E. Kastl, C. Arnoldi, R. D. Bardgett, F. Poly, T. Pommier, M. Schloter, U. Tappeiner, M. Bahn, and J. ‐C. Clément. 2013. Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. J Ecol 101:47-57. https://doi.org/10.1111/1365-2745.12014.

Gross, N., L. Börger, S. I. Soriano‐Morales, Y. Le Bagousse‐Pinguet, J. L. Quero, M. García‐Gómez, E. Valencia‐Gómez, and F. T. Maestre. 2013. Uncovering multiscale effects of aridity and biotic interactions on the functional structure of Mediterranean shrublands. J Ecol 101: 637-649. https://doi.org/10.1111/1365-2745.12063.

Guida-Johnson, B., and G. A. Zuleta. 2013 Land-use land-cover change and ecosystem loss in the Espinal ecoregion, Argentina. Agric Ecosys Environ 181:31-40. https://doi.org/10.1016/j.agee.2013.09.002.

Gurvich, D. E., S. R. Zeballos, and P. H. Demaio. 2014. Diversity and composition of cactus species along an altitudinal gradient in the Sierras del Norte Mountains (Córdoba, Argentina). South African J Bot 93:142-147. https://doi.org/10.1016/j.sajb.2014.03.018.

Hendry, G. A. F., and J. P. Grime. 1993. Methods in comparative plant ecology. A laboratory manual. (Chapman and Hall: London). https://doi.org/10.1007/978-94-011-1494-3.

Hoyos, L. E., A. M. Cingolani, M. R. Zak, M. V. Vaieretti, D. E. Gorla, and M. R. Cabido. 2013. Deforestation and precipitation patterns in the arid Chaco forests of central Argentina. Appl Veg Sci 16:260-271. https://doi.org/10.1111/j.1654-109X.2012.01218.x.

Hoyos, L. E., M. R. Cabido, and A. M. Cingolani. 2018. A Multivariate approach to study drivers of land-cover changes through remote sensing in the Dry Chaco of Argentina. ISPRS Int J Geo-Inf 7:170. https://doi.org/10.3390/ijgi7050170.

Kattge, J., G. Bönisch, S. Díaz, S. Lavorel, et al. 2020. TRY plant trait database - enhanced coverage and open access. Glob Change Biol 26:119-188. https://doi.org/10.1111/gcb.14904.

Keddy, P. A. 1992. Assembly and response rules: two goals for predictive community ecology. J Veg Sci 3:157-164. https://doi.org/10.2307/3235676.

Kent, M., and P. Coker. 1992. Vegetation description and analysis: A practical approach. New York: John Wiley and Sons.

Laughlin, D. C. 2014. The intrinsic dimensionality of plant traits and its relevance to community assembly. J Ecol 102:186-193. https://doi.org/10.1111/1365-2745.12187.

Lavorel, S., and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545e556. https://doi.org/10.1046/j.1365-2435.2002.00664.x.

Ledesma, R., C. Kunst, S. Bravo, M. E. Leiva, L. Lorea, J. Godoy, and V. Navarrete. 2018. Developing a prescription for brush control in the Chaco region, effects of combined treatments on the canopy of three native shrub species. Arid Land Res Manag 32:351-366. https://doi.org/10.1080/15324982.2018.1430072.

Lohbeck, M., L. Winowiecki, E. Aynekulu, C. Okia, and T-G. Vågen. 2017. Trait-based approaches for guiding the restoration of degraded agricultural landscapes in East Africa. J Appl Ecol 55:59-68. https://doi.org/10.1111/1365-2664.13017.

Moles, A. T., S. E. Perkins, S. W. Laffan, H. Lores-Moreno, M. Awasthy, et al. 2014. Which is a better predictor of plant traits: Temperature or precipitation? J. Veg. Sci 25:1167-1180. https://doi.org/10.1111/jvs.12190.

Mooney, H., A. Larigauderie, M. Cesario, T. Elmquist, O. Hoegh Guldberg, S. Lavorel, G. Mace, M. Palmer, R. Scholes, and T. Yahara. 2009. Biodiversity, climate change, and ecosystem services. Curr Op Env Sust 1: 46-54. https://doi.org/10.1016/j.cosust.2009.07.006.

Murphy, K. L., J. M. Klopatek, and C. C. Klopatek. 1998. The effects of litter quality and climate on decomposition along an elevational gradiente Ecol Appl 8:1061-1071. https://doi.org/10.1890/1051-0761(1998)008[1061:TEOLQA]2.0.CO;2.

Murphy, K. L., I. C. Burke, M. A. Vinton, W. K. Lauenroth, M. R. Aguiar, D. A. Wedin, R. A. Virginia, and P. N. Lowe. 2002. Regional analysis of litter quality in the central grassland region of North America. J Veg Sci 13:395-402. https://doi.org/10.1111/j.1654-1103.2002.tb02063.x.

Navas, M. -L., and C. Violle. 2009. Plant traits related to competition: how do they shape the functional diversity of communities? Comm Ecol 10:131-137. https://doi.org/10.1556/ComEc.10.2009.1.15.

Olson, J. S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322-331. https://doi.org/10.2307/1932179.

Onoda, Y., M. Westoby, P. B. Adler, A. M. F. Choong, F. J. Clissold, J. H. C. Cornelissen, S. Díaz, N. J. Dominy, A. Elgart, L. Enrico, P. V. A. Fine, J. J. Howard, A. Jalili, K. Kitajima, H. Kurokawa, C. McArthur, P. W. Lucas, L. Markesteijn, N. Pérez-Harguindeguy, L. Poorter, L. Richards, L. S. Santiago, E. E. Sosinski Jr., S. A. Van Bael, D. I. Warton, I. J. Wright, S. J. Wright, and N. Yamashita. 2011. Global patterns of leaf mechanical properties. Ecol Lett 14:301-312. https://doi.org/10.1111/j.1461-0248.2010.01582.x.

Ovaskainen, O., G. Tikhonov, A. Norberg, F. Guillaume Blanchet, L. Duan, D. Dunson, T. Roslin, and N. Abrego. 2017. How to make more out of community data? A conceptual framework and its implementation as models and software. Ecol Lett 20: 561-576. https://doi.org/10.1111/ele.12757.

Pérez Harguindeguy, N., S. Díaz, J. H. C. Cornelissen, and M. Cabido. 1997. Comparación experimental de la tasa de descomposición foliar de especies vegetales del centro-oeste de Argentina. Ecología Austral 7:87-94.

Pérez Harguindeguy, N., S. Díaz, J. H. C. Cornelissen, F. Vendramini, M. Cabido, and A. Castellanos. 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant Soil 218: 21-30. https://doi.org/10.1023/A:1014981715532.

Pérez‐Harguindeguy, N., S. Díaz, F. Vendramini, J. H. C. Cornelissen, D. E. Gurvich, and M. Cabido. 2003. Leaf traits and herbivore selection in the field and in cafeteria experiments. Austral Ecol 28:642-650. https://doi.org/10.1046/j.1442-9993.2003.01321.x.

Pérez Harguindeguy, N., S. Díaz, F. Vendramini, D. E. Gurvich, A. M. Cingolani, M. A. Giorgis, and M. Cabido. 2007. Direct and indirect effects of climate on decomposition in native ecosystems from central Argentina. Austral Ecol 32:749-757. https://doi.org/10.1111/j.1442-9993.2007.01759.x.

Pérez Harguindeguy, N., s. M. Díaz, E. Garnier, S. Lavorel, H. Poorter, P. Jaureguiberry, B. Harte, M. Syndonia, D. E. Gurvich, R. C. Urcelay, G. Funes, F. Quétier, M. V. Vaieretti, G. Conti, L. Poorter, I. J. Wright, P. Ray, L. Enrico, J. G. Pausas, A. F. de Vos, N. Buchmann, J. G. Hodgson, K. Thompson, H. D. Morgan, H. ter Steege, M. G. A. Van Der Heijden, L. Sack, B. Blonder, P. Poschlod, M. C. Staver, S. Aquino, and J. H. C. Cornelissen. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167e234. https://doi.org/10.1071/BT12225.

Poca, M., N. Pérez Harguindeguy, M. V. Vaieretti, and A. M. Cingolani. 2014. Descomposición y calidad físico-química foliar de 24 especies dominantes de los pastizales de altura de las sierras de Córdoba, Argentina. Ecología Austral 24(2):249-257. https://doi.org/10.25260/EA.14.24.2.0.28.

Schlesinger, W. H., and E. Bernhardt. 2013. Biogeochemistry: Analysis of global change. Elsevier. Oxford, UK.

Šímová, I., C. Violle, J. ‐C. Svenning, J. Kattge, K. Engemann, B. Sandel, R. K. Peet, S. K. Wiser, B. Blonder, B. J. McGill, B. Boyle, N. Morueta-Holme, N. J. B. Kraft, P. M. van Bodegom, A. G. Gutiérrez, M. Bahn, W. A. Ozinga, A. Tószögyová, and B. J. Enquist. 2018. Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. J Biogeogr. 45:895-916. https://doi.org/10.1111/jbi.13171.

Reich, P. B. 2014. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J Ecol 102:275-301. https://doi.org/10.1111/1365-2745.12211.

Tálamo, A., and S. M. Caziani. 2003. Variation in woody vegetation among sites with different disturbance histories in the Argentine Chaco. Forest Ecol Manag 184:79-92. https://doi.org/10.1016/S0378-1127(03)00150-6.

Trabucco, A., and R. J. Zomer. 2009. Global Aridity Index (Global-Aridity) and Global Potential Evapo-Transpiration (Global-PET) Geospatial Database. CGIAR Consortium for Spatial Information. URL: csi.cgiar.org.

Vaieretti, M. V., N. Pérez Harguindeguy, D. Gurvich, A. M. Cingolani, and M. Cabido. 2005. Descomposition dynamics and physico-chemical leaf quality of abundant species in a montane woodland in central Argentina. Plant Soil 278:223-234. https://doi.org/10.1007/s11104-005-8432-1.

Vendramini, F., S. Díaz, N. Pérez Harguindeguy, M. Cabido, J. M. Llano-Sotelo, and A. Castellanos. 2000. Composición química y caracteres foliares en plantas de distintos tipos funcionales del centro-oeste de Argentina. Kurtziana 28:181-193.

Violle, C., M. L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier. 2007. Let the concept of trait be functional. Oikos 116:882-892. https://doi.org/10.1111/j.0030-1299.2007.15559.x.

Warton, D. I., F. G. Blanchet, R. B. O’Hara, O. Ovaskainen, S. Taskinen, S. C. Walker, and F. K. C. Hui. 2015. So many variables: Joint modeling in community ecology. Trends in Ecol Evol 30:766-779. https://doi.org/10.1016/j.tree.2015.09.007.

Wedin, D. A. 1995. Species, nitrogen, and grassland dynamics: the constraints of stuff. Pp. 253-62 in C. G. Jones and J. H. Lawton (eds.). Linking Species and Ecosystems. Chapman and Hall, New York. https://doi.org/10.1007/978-1-4615-1773-3_24.

Westoby, M. 1998. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213-227. https://doi.org/10.1023/A:1004327224729.

Wigley, B. J., J. A. Slingsby, S. Díaz, W. J. Bond, H. Fritz, and C. Coetsee. 2016. Leaf traits of African woody savanna species across climate and soil fertility gradients: evidence for conservative versus acquisitive resource-use strategies. J Ecol 104:1357-1369. https://doi.org/10.1111/1365-2745.12598.

Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, T. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M. -L. Navas, U. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C Thomas, M. G Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821-827. https://doi.org/10.1038/nature02403.

Wright, I. J., N. Dong, V. Maire, I. C. Prentice, M. Westoby, S. Díaz, R. V. Gallagher, B. F. Jacobs, R. Kooyman, E. A. Law, M. R. Leishman, Ü. Niinemets, P. B. Reich, L. Sack, R. Villar, H. Wang, and P. Wilf. 2017. Global climatic drivers of leaf size. Science 357:917-921. https://doi.org/10.1126/science.aal4760.

Yang, Y., Q. Zhu, C. Peng, H. Wang, W. Xue, G. Lin, Z. Wen, J. Chang, M. Wang, G. Liu, and S. Li. 2016. A novel approach for modelling vegetation distributions and analysing vegetation sensitivity through trait-climate relationships in China. Sci Rep 6:24110. https://doi.org/10.1038/srep24110.

Zak, M. R., M. R. Cabido, D. Cáceres, and S. Díaz. 2008. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors. Envir Manag 42:181-189. https://doi.org/10.1007/s00267-008-9101-y.

Zeballos, S. R., M. A. Giorgis, M. R. Cabido, A. T. R. Acosta, M. del R. Iglesias, and J. J. Cantero. 2020. The lowland seasonally dry subtropical forests in central Argentina: vegetation types and a call for conservation. Vegetation Classification and Survey 1:87-102. https://doi.org/10.3897/VCS/2020/38013.

Variación de los caracteres foliares en comunidades vegetales del centro de la Argentina bajo diferentes condiciones climáticas y de uso del suelo
Publicado
2021-06-16