Ser o no ser tolerante a la sombra: economía de agua y carbono en especies arbóreas del Bosque Atlántico (Misiones, Argentina)

Autores/as

  • Paula I. Campanell Laboratorio de Ecología Funcional, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. CONICET. Instituto de Biología Subtropical, Facultad de Ciencias Forestales, Universidad Nacional de Misiones. CONICET. Puerto Iguazú, Misiones, Argentina.
  • M. Genoveva Gatti Laboratorio de Ecología Funcional, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. CONICET. Instituto de Biología Subtropical, Facultad de Ciencias Forestales, Universidad Nacional de Misiones. CONICET. Puerto Iguazú, Misiones, Argentina.
  • Lia Montti Laboratorio de Ecología Funcional, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. CONICET.
  • Mariana Villagra Laboratorio de Ecología Funcional, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. CONICET.
  • Guillermo Goldstein Laboratorio de Ecología Funcional, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. CONICET.

Palabras clave:

arquitectura hidráulica, densidad de madera, eficiencia en el transporte de agua, tasa de asimilación de carbono, tasa de crecimiento

Resumen

La radiación solar es el factor más importante que limita el crecimiento de las plantas en los bosques tropicales y subtropicales húmedos. En función de esto, las especies de árboles se clasificaron históricamente en dos grupos funcionales sobre la base de sus requerimientos de germinación, establecimiento y crecimiento. Mientras que las especies más tolerantes a la sombra pueden germinar, crecer y establecerse en sitios con niveles bajos de radiación, las especies de sol necesitan niveles altos para su desarrollo. Sin embargo, dentro de los bosques existen variaciones espacio-temporales en la disponibilidad de luz y la mayoría de las especies tienen comportamientos ecofisiológicos intermedios entre las dos categorías extremas. En este trabajo analizamos adaptaciones relacionadas con la economía de agua y carbono (tales como la densidad de la madera, la eficiencia en el transporte de agua y la capacidad fotosintética) de especies arbóreas del Bosque Atlántico, bajo la hipótesis de que las presiones selectivas han moldeado características especie-específicas que les permiten optimizar la captura de la radiación solar y coordinarla con el transporte de agua hasta las hojas. Presentamos evidencia que indica que la densidad de la madera es una característica que permite predecir el comportamiento de las especies arbóreas, en relación a las tasas de crecimiento y características relacionadas con el transporte y regulación del uso del agua. Las especies menos tolerantes a la sombra tienen densidad de madera baja y una eficiencia alta en el transporte de agua. En ambientes con alta radiación y demanda evaporativa, las plantas que tienen una baja densidad de madera y una eficiencia alta en el transporte de agua desde el suelo hasta las hojas pueden mantener niveles altos de potencial hídrico foliares (menores déficits hídricos), una mayor conductancia estomática y, consecuentemente, una mayor tasa de asimilación de carbono y crecimiento. Los cambios drásticos en la radiación solar por la apertura de un claro pueden imponer también cambios muy grandes en las condiciones de crecimiento de la plantas. El desarrollo de los individuos en las nuevas condiciones depende de su plasticidad fenotípica, la cual puede variar ampliamente entre las distintas especies. Los individuos juveniles de especies menos tolerantes a la sombra pueden responder rápidamente a los cambios en los niveles de radiación aclimatando su fisiología y morfología para mantener tasas de crecimiento mayores que las de especies más tolerantes.

Citas

AIDE, TM & J CAVELIER. 1994. Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta, Colombia. Restor. Ecol. 2:219-229.

ALDER, NN; MT SPERRY & WT POCKMAN. 1996. Root and stem xylem embolism, stomatal conductance and leaf turgor in Acer grandidentatum populations along a soil moisture gradient. Oecologia 105:293-301.

AUGSPURGER, CK & CK KELLY. 1984. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61:211-217.

AUGSPURGER, CK. 1984a. Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology 65:1705-1712.

AUGSPURGER, CK. 1984b. Light requirements of neotropical tree seedlings: a comparative study of growth and survival. J. Ecol. 72:777-795.

BARALOTO, C; CET PAINE; L POORTER; J BEAUCHENE; D BONAL; ET AL. 2010. Decoupled leaf and stem economics in rain forest trees. Ecol. Lett. 13:1338-1347.

BARKER, MG; MC PRESS & ND BROWN. 1997. Photosynthetic characteristics of dipterocarp seedlings in three tropical rain forest light environments: a basis for niche partitioning? Oecologia 112:453-463.

BARONE, KA & PD COLEY. 2002. Herbivorismo y las defensas de las plantas. Pp. 692 en: Guariguata, MR & GH Kattan (eds.). Ecología y Conservación de Bosques Neotropicales. Libro Universitario Regional, Costa Rica.

BAZZAZ, FA & STA PICKETT. 1980. Physiological ecology of tropical succession: A comparative review. Ann. Rev. Ecol. Syst. 11:287-310.

BOND, BJ & KL KAVANAGH. 1999. Stomatal behavior of four woody species in relation to leaf-specific hydraulic conductance and threshold water potential. Tree Physiol. 19:503-510.

BRODRIBB, TJ & TS FEILD. 2000. Stem hydraulic supply is linked to leaf photosynthetic capacity: evidence from New Caledonian and Tasmanian rain forests. Plant Cell Environ. 23:1381-1388.

BRODRIBB, TJ; NM HOLBROOK & MV GUTIÉRREZ. 2002. Hydraulic and photosynthetic co-ordination in seasonally dry tropical forest trees. Plant Cell Environ. 25:1435-1444.

BRODRIBB, TJ; NM HOLBROOK; EJ EDWARDS & MV GUTIÉRREZ. 2003. Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, cell and Environment 26:443-450.

BROKAW, NVL. 1985. Gap-phase regeneration in a tropical forest. Ecology 66:682-687.

BUCCI, SJ; G GOLDSTEIN; FC MEINZER; FG SCHOLZ; AC FRANCO; ET AL. 2004. Functional convergence in hydraulic architecture and water relations of tropical savanna trees: from leaf to whole plant. Tree Physiol. 24:891-899.

CAMPANELLO, P. 2004. Diversidad, crecimiento y fisiología de árboles en la Selva Misionera: efectos de los cambios en la estructura y funcionamiento del ecosistema producidos por la invasión de lianas y bambúseas. Tesis doctoral, Universidad de Buenos Aires, Argentina.

CAMPANELLO, PI; L MONTTI; P MACDONAGH & G GOLDSTEIN. 2009. Reduced-Impact Logging and Post-Harvest Management in the Atlantic Forest of Argentina: Alternative approaches to enhance regeneration and growth of canopy trees. Pp. 39-59 en: Grossberg, SP (ed.). Forest Management. Nova Science Publishers, New York.

CAMPANELLO, PI; MG GATTI & G GOLDSTEIN. 2008. Coordination between water-transport efficiency and photosynthetic capacity in canopy tree species at different growth irradiances. Tree Physiol. 28:85-94.

CAMPANELLO, PI; MG GATTI; A ARES; L MONTTI & G GOLDSTEIN. 2007. Tree regeneration and microclimate in a liana and bamboo-dominated semideciduous Atlantic Forest. For. Ecol. Manage. 252:108-117.

CAVELIER, J & G VARGAS. 2002. Procesos hidrológicos. Pp. 692 en: Guariguata, MR & GH Kattan (eds.). Ecología y Conservación de Bosques Neotropicales. Libro Universitario Regional, Costa Rica.

CHAPMAN, CA & LJ CHAPMAN. 1999. Forest restoration in abandoned agricultural land: a case study from East Africa. Conserv. Biol. 13:1301-1311.

CHAVE, J; D COOMES; S JANSEN; SL LEWIS; NG SWENSON; ET AL. 2009. Towards a worldwide wood economics spectrum. Ecol. Lett. 12:351-366.

CHAZDON, RL. 1988. Sunflecks and their importance to forest understory plants. Adv. Ecol. Res. 18:1-63.

CHAZDON, RL; RW PEARCY; DW LEE & N FETCHER. 1996. Photosynthetic responses to contrasting light environments. En: Mulkey, S; RL Chazdon & AP Smith (eds.). Tropical Plant Ecophysiology. Chapman and Hall, New York, USA.

CLARK, DA & DB CLARK. 1992. Life history diversity of canopy and emergent trees in a neotropical rain forest. Ecol. Monogr. 62:315-344.

CLARK, DB; DA CLARK; PM RICH; S WEISS & SF OBERBAUER. 1996. Landscape scale evaluation of understory light and canopy structure: methods and application in a neotropical lowland rain forest. Can. J. For. Res. 26:747-757.

COCHARD, H; M PEIFFER; K LEGALL & A GRANIER. 1997. Developmental control of xylem hydraulic resistances and vulnerability to embolism in Fraxinnus excelsior: impacts on water relations. J. Exp. Bot. 308:655-663.

COCHARD, H; D LEMOINE & E DREYER. 1999. The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica L. Plant Cell Environ. 22:101-108.

COCHARD, H; P CRUIZIAT & MT TYREE. 1992. Use of positive pressures to establish vulnerability curves: further support for the air-seeding hypothesis and implications for pressure-volume analysis. Plant Physiol. 100:205-209.

DENSLOW, JS & GS HARTSHORN. 1994. Tree-fall gap environments and forest dynamic processes. Pp. 120-127 en: McDade, LA (ed.). La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago. USA.

DENSLOW, JS. 1987. Tropical rainforest gaps and tree species diversity. Ann. Rev. Ecol. Sys. 18:431-451.

DOMEC, JC & BL GARTNER. 2001. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15: 204-214.

ENQUIST, BJ; GB WEST & JH BROWN.1999. Quarter- power allometric scaling in vascular plants: functional basis and ecological consequences. Pp. 167-199 en: Brown, JH & GB West (eds.). Scaling in Biology. Oxford University Press, Oxford.

FETCHER, N; SF OBERBAUER & RL CHAZDON. 1994. Physiological ecology of plants. Pp 25-55 en: McDade, L; KS Bawa; H Hespenheide; G Hartshorn (eds.). La Selva: Ecology and Natural History of a Neotropical Rainforest. University of Chicago Press, Chicago. USA.

FICHOT, R; S CHAMAILLARD; C DEPARDIEU; D LE THIEC; H COCHARD; ET AL. 2011. Hydraulic efficiency and coordination with xylem resistance to cavitation, leaf function, and growth performance among eight unrelated Populus deltoides Populus nigra hybrids. J. Exp. Bot. 62:2093-2106.

GALINDO-LEAL, C & I GUSMÃO CÂMARA. 2003. Atlantic Forest Hotspot Status: An Overview. Pp. 3-11 en: Galindo-Leal, C & I Gusmão Câmara (eds.). The Atlantic Forest of South America: biodiversity status, threats and outlook (1st edition). Island Press, Washington, USA.

GARTNER, BL & FC. MEINZER. 2004. Structure- function relationships in sapwood water transport and storage. In: Zwieniecki, M & NM Holbrook (eds.). Long distance transport systems in plants: Integration and Coordination in Trees. Academic Press, San Diego. USA.

GATTI, MG; P CAMPANELLO & G GOLDSTEIN. 2008. Frost resistance in the tropical palm Euterpe edulis and its pattern of distribution in the Atlantic Forest of Argentina. For. Ecol. Manage. 256:633-640.

GIVNISH, TJ. 1988. Adaptationto sun and shade, a whole plant perspective. Aust. J. Plant Physiol. 15:63-92.

GOLDSTEIN, G; FC MEINZER & JL ANDRADE. 2002. El flujo de agua en los árboles del dosel. Pp. 692 en: Guariguata, MR & GH Kattan (eds.). Ecología y Conservación de Bosques Neotropicales. Libro Universitario Regional, Costa Rica.

GRUBB, PJ. 1977. The maintenance of species- richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52:107-145.

HACKE, UG; JS SPERRY; JK WHEELER & L CASTRO. 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol. 26:689-701.

HACKE, UW & JS SPERRY. 2001. Functional and ecological xylem anatomy. Perspect. Plant Ecol. Evol. Syst. 4(2): 97-115.

HACKE, UW; JS SPERRY; WT POCKMAN, SD DAVIS & K MCCULLOH. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457-461.

HARMS, KE; SJ WRIGHT; O CALDERÓN; A HERNÁNDEZ & EA HERRE. 2000. Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature 404:493-495.

HOLL, KD & M KAPPELLE. 1999. Tropical forest recovery and restoration. Trends Ecol. Evol. 14:378-379.

HUBBELL, SP; RB FOSTER; ST O’BRIEN; KE HARMS; R CONDIT; ET AL. 1999. Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science 283:554-557.

JONES, TJ; CD LUTON; LS SANTIAGO & G GOLDSTEIN. 2010. Hydraulic constraints on photosynthesis in subtropical evergreen broad leaf forest and pine woodland trees of the Florida Everglades. Trees 24:471-478.

KATUL, G; R LEUNING & R OREN. 2003. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ. 26:339-350.

KITAJIMA, K. 1994. Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia 98:419-428.

Leite, PF & RM Klein. 1990. Geografia do Brasil-Regiao Sul. Rio de Janeiro. Pp. 113-150. Instituto Brasileiro de Geografia e Estatística-IBGE. Brasil

LOEHLE, C & G NAMKOONG. 1987. Constraints on Tree Breeding: Growth Tradeoffs, Growth Strategies, and Defensive Investments. Forest Sci. 33:1089-1097.

LUSK, CH & PB REICH. 2000. Relationships of leaf dark respiration with light environment and tissue nitrogen content in juveniles of 11cold-temperate tree species. Oecologia 123:318-329.

MAHERALI, H; EH DELUCIA & TW SIPE. 1997. Hydraulic adjustment of maple saplings to canopy gap formation. Oecologia 112:472-480.

MAHERALI, H; WT POCKMAN & RB JACKSON. 2004. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184-2199

MARKESTEIJN, L; L POORTER; P HORA; L SACK & F BONGERS. 2011. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34:137-148.

MASEDA, PH & RJ FERNÁNDEZ. 2006. Stay wet or else: Three ways in which plants can adjust hydraulically to their environment. J. Exp. Bot. 57:3963-3977.

MEINZER, FC; G GOLDSTEIN; P JACKSON; NM HOLBROOK; MV GUTIÉRREZ; ET AL. 1995. Environmental and physiological regulation of transpiration in tropical forest gap species: the influence of boundary layer and hydraulic conductance properties. Oecologia 101:514-522.

MEINZER, FC; KA MCCULLOH; B LACHENBRUCH; DR WOODRUFF & DM JOHNSON. 2010. The blind men and the elephant: the impact of context and scale in evaluating conflicts between plant hydraulic safety and efficiency. Oecologia 164:287-296

MEINZER, FC; PI CAMPANELLO; JC DOMEC; MG GATTI; G GOLDSTEIN; ET AL. 2008. Constraints on physiological function associated with branch architecture and wood density in tropical forest trees. Tree Physiol. 28:1609-1617.

MENCUCCINI, M. 2003. The ecological significance of long distance water transport: short term regulation, long term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ. 26:163-182.

MONTGOMERY, RA & RL CHAZDON. 2002. Light gradient partitioning by tropical tree seedlings in the absence of canopy gaps. Oecologia 131:165-174.

MONTTI, L; PI CAMPANELLO & G GOLDSTEIN. 2011. Flowering, die-back and recovery of a semelparous woody bamboo in the Atlantic Forest. Acta Oecol. 37:361-368.

POORTER, L. 2009. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytol. 181:890-900.

PRATT, RB; AL JACOBSEN; FW EWERS & SD DAVIS. 2007. Relationships among xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral. New Phytol. 174:787-798.

PUTZ, FE; PD COLEY; K LU; A MONTALVO & A ALELLO. 1983. Snapping and uprooting of trees: structural determinants and ecological characteristics. Can. J. Forest Res. 13:1011-102.

RAISKILA, S; P SARANPÄÄ; K FAGERSTEDT; T LAAKSO; M LÖIJA; ET AL. 2006. Growth rate and wood properties of Norway Spruce cutting clones on different sites. Silva Fennica 40:247-256.

REICH, PB; MG TJOELKER; MB WALTERS; DW VANDERKLEIN & C BUSCHENA. 1998. Close association of RGR, leaf and root morphology, seed mass and shade tolerance in seedlings of nine boreal tree species grown in high and low light. Funct. Ecol. 12:327-338.

SALLEO, S; TM HINCKLEY; SB KIKUTA; MA LOGULLO; MA WEILOGNY; ET AL. 1992. A method for inducing xylem emboli: in situ experiments with a field grown tree. Plant Cell Environ. 15:491-497.

SANFORD, RL; HE BRAKER & GS HARTSHORN. 1986. Canopy openings in a primary neotropical lowland forest. J. Trop. Ecol. 2:227-282.

SANTIAGO, LS; G GOLDSTEIN; FC. MEINZER; JB FISHER; K MACHADO; ET AL. 2004. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia 140:543-550.

SCHNITZER, SA & WP CARSON. 2000. Have we forgotten the forest because of the trees? Trends Ecol. Evol. 15:375-376.

SCHOLZ, FG; SJ BUCCI; G GOLDSTEIN; FC MEINZER; AC FRANCO; ET AL. 2007. Biophysical properties and functional significance of stem water storage tissues in neo-tropical savanna trees. Plant Cell Environ. 30:236-248.

SCHULTZ, HR & MA MATTHEWS. 1993. Xylem development and hydraulic conductance in sun and shade shoots of grapevine Vitis vinifera L.: evidence that low light uncouples water transport capacity from leaf area. Planta 190:393-406.

SHUMWAY, DL; KC STEINER & TE KOLB. 1993. Variation in seedling hydraulic architecture as a function of species and environment. Tree Physiol. 12:41-54.

SPERRY, JS; JR DONNELLY & MT TYREE. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ. 11:35-40.

SPERRY, JS; KL NICHOLS; JEM SULLIVAN & SE EASTLACK. 1994. Xylem embolism in ring-porous, diffuse-porous and coniferous trees of northern Utah and interior Alaska. Ecology 75:1736-1752.

SPERRY, JS; UG HACKE; R OREN & JP COMSTOCK. 2002. Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ. 25:251-263.

STRATTON, L; G GOLDSTEIN & FC MEINZER. 2000. Stem water storage and efficiency of water transport: their functional significance in a Hawaiian dry forest. Plant Cell Environ. 23:99-106.

SWAINE, MD & TC WHITMORE. 1988. On the definition of ecological species groups in tropical rain forests. Vegetatio 75:81-86.

TABARELLI, M & W MANTOVANI. 2000. Gap-phase regeneration in a tropical montane forest: the effects of gap structure and bamboo species. Plant Ecol. 148:149-155.

TYREE, MT & FW EWERS. 1991. Tansley review No. 34 The Hydraulic architecture of trees and other woody plants. New Phytol. 119:345-360.

TYREE, MT; SD DAVIS & H COCHARD. 1994. Biophysical perspectives of xylem evolution: is there a tradeoff of hydraulic efficiency for vulnerability to dysfunction? Int. Assoc. Wood Anat. J. 15:335-360.

UHL, C; K CLARK; N DEZZEO & P MAQUINO. 1988. Vegetation dynamics in Amazonian treefall gaps. Ecology 69:751-763.

VAN DAM, O. 2001. Forest filled with gaps. The effect of gap size on microclimate, water and nutrient cycling. A study in Guyana. Ph.D. Thesis, Utrecht University, Netherlands.

WELDEN, CW; SW HEWETT; SP HUBELL & RB FOSTER. 1991. Sapling survival, growth and recruitment: relationship to canopy height in a neotropical forest. Ecology 72:35-50.

WHITMORE, TC. 1989. Canopy gaps and the two major groups of forest trees. Ecology 70:536-538.

WRIGHT, SJ. 2002. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia 130:1-14.

WRIGHT, SJ; HC MULLER-LANDAU; R CONDIT & SP HUBBELL. 2003. Gap-dependent recruitment, realized vital rates, and size distributions of tropical trees. Ecology 84:3174-3185.

Descargas

Publicado

2011-12-01

Cómo citar

Campanell, P. I., Gatti, M. G., Montti, . L., Villagra, M., & Goldstein, G. (2011). Ser o no ser tolerante a la sombra: economía de agua y carbono en especies arbóreas del Bosque Atlántico (Misiones, Argentina). Ecología Austral, 21(3), 285–300. Recuperado a partir de https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1273