Efectos de la aplicación de glifosato sobre parámetros químico-fisiológicos en Usnea amblyoclada (Müll. Arg.) Zahlbr

Autores/as

  • María Fernanda Carrera Departamento de Química. Cátedra de Química General; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba. Córdoba, Argentina.
  • Hebe Alejandra Carreras Departamento de Química. Cátedra de Química General; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba. Córdoba, Argentina.

Palabras clave:

liquen, herbicida, control de malezas, soja, biomonitor

Resumen

La difusión del empleo de glifosato como herbicida para el control de malezas, principalmente en cultivos de soja transgénica, puede provocar alteraciones biológicas y ecológicas al ecosistema. Con el fin de estimar el efecto de este herbicida sobre la flora liquénica se empleó la especie Usnea amblyoclada (Müll. Arg.) Zahlbr como biomonitor “in situ”. Se trasplantaron muestras de este liquen a un campo de cultivo de soja y a una zona control y durante tres meses se determinaron parámetros fisiológicos indicadores de daño. En otro ensayo se evaluó, en condiciones controladas, el efecto de distintas dosis de herbicida sobre la fisiología del liquen. Los resultados del experimento a campo mostraron que la aplicación de glifosato produjo una disminución significativa de los pigmentos fotosintéticos. Se observó una disminución significativa de los contenidos de feofitina ‘a’ y ‘b’ y un aumento en las concentraciones de los productos de oxidaciones de membranas celulares. Los resultados obtenidos en condiciones controladas fueron similares, por lo que se comprueba el efecto perjudicial del glifosato sobre U. amblyoclada y se pone de manifiesto la utilidad de esta especie como biomonitor de zonas agrícolas.

Citas

AGRAWAL, BK. 1994. Ab initio calculation of the electronic, structural, and dynamical properties of Zn-based semiconductors. Phys. Rev. B. 50:14881-14887.

ALSTRUP, V. 1991. Effects of pesticides on lichens. Bryonora 9:2-4.

BANERJEE, BD; V SETH; A BHATTACHARYA; ST PASHA & AK CHKRABORTY. 1999. Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicol. Lett. 107:33.

BROWN, DH. 1992. Impact of agriculture on bryophytes and lichens. Pp. 259-283 en: Bates JW & AM Farmer (eds.). Bryophytes and Lichens in a Changing Environment. Oxford. Clarendon Press.

BUKOSWSKA, B. 2003. Effects of 2, 4-d and its metabolite 2, 4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes. Comp. Biochem. Phys. C. 135:435.

CALVELO, S & S LIBERATORE. 2009. Applicability of In Situ or Transplanted Lichens for Asessment of Atmospheric Pollution in Patagonia, Argentina. Journal of Atmospheric Chemistry 49(1-3).

CALVELO, S; N BACCALÁ & S LIBERATORE. 2009. Lichens as Bioindicators of Air Quality in Distant Areas in Patagonia (Argentina). Environmental Bioindicators 4:123-135.aBs

CARRERAS, HA; GL GUDIÑO & ML PIGNATA. 1998. Comparative biomonitoring of atmospheric quality in five zones of Córdoba city (Argentina) employing the transplanted lichen Usnea sp. Enviromental Pollution 103:317-325.

CARRERAS, HA & ML PIGNATA. 2001. Comparison among air pollutants, meteorological conditions and some chemical parameters in transplanted lichen Usnea amblyoclada (Müll. Arg.) Zahlbr. Environmental Pollution 111:45-52.

CARRERAS, HA & ML PIGNATA. 2002. Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environmental Pollution 117:77-87.

CARRERAS, H. 2004. Biomonitoreo de metales pesados. Efecto de contaminantes atmosféricos urbanos sobre la incorporación de cationes metálicos en el liquen Usnea amblyoclada (Müll. Arg.) Zahlbr. Tesis doctoral. Cátedra de Química General. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba. Córdoba, Argentina. Pp. 7-13.

GONZÁLEZ, CM & ML PIGNATA. 1994. The influence of air pollution on soluble proteins, chlorophyll degradation, MDA, sulphur and amounts of heavy metals in a transplanted lichen. Chemistry and Ecology 9:105-113.

GROOS, J. 1991. Pigments in vegetables. Chlorophylls and carotenoids. Van Nostrand Reinhold, New York.

HEATH, RL & L PACKER. 1968. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acids peroxidation. Archives of Biochemestry and Biophysics 125:189-198.

HEGAZY, HS & M EL HAMID. 1998. Physiological responses of barley plants exposed to sequential SO2 fumigation under dry and humid conditions. I. The impact on acyl lipids composition, photosynthetic pigments and activities of certain enzymes of the leaves. Desert Intitute Bulletin Egypt 48(1):21-51.

HO, MW & LL CHING. 2003. The case for a GM-free Sustainable World. Parte 2: Seven Herbicide Hazards. Pp. 27-30.

INBARAJ, JJ & CF CHIGNELL. 2004. Cytotoxic action of juglone and plumbagin: a mechanistic study using HaCaT keratinocytes. Chem. Res. Toxicol. 17:55.

KOSUGI, H; T KOJIMA & K KIKUGAWA. 1989. Thiobarbituric acid-reactive substances from peroxidized lipids. Lipids 24:873-881.

LANG, GE; WA REINERS & RK HEIER. 1976. Potential alteration of precipitation chemistry by epiphytic lichens. Oecologia 25:229-241.

LIJTEROFF, R; L LIMA & B PRIERI. 2009. Uso de Líquenes como bioindicadores de contaminación atmosférica en la ciudad de San Luís, Argentina. Rev. Int. Contam. Ambient. 25(2):111-120.

NASH III, TH. 1996. Lichen Biology. T.H. Nash III (ed.). University Press, Cambridge.

NEWMASTER, SG; F WAYNE BELL & DH VITT. 1999. The effects of glyphosate and tricloryr on common bryophytes and lichens in northwestern Ontario. NRC Canadá. Can. J.For. Res. 29:1101-1111.

NIVIA, E. 2002. Las Guerras en Colombia: Drogas, Armas y Petróleo. Conferencia en el Instituto Hemisférico de las Américas. Universidad de California, Davis, Mayo 17-19, 2001. Las fumigaciones aéreas sobre cultivos ilícitos si son peligrosos. Algunas aproximaciones.

RODRÍGUEZ, JH; HA CARRERAS; ML PIGNATA & CM GONZÁLEZ. 2007. Nickel Exposure Enhances the Susceptibility of Lichens Usnea amblyoclada and Ramalina celastri to Urban Atmospheric Pollutants. Archives of Environmental Contamination and Toxicology 53(4):533-540.

SANDMANN, G & HG GONZALES. 1989. Peroxidative processes induced in bean leaves by fumigation with sulphur dioxide. Environmental Pollution 56:145-154.

SANTONI, CS & R LIJTEROFF. 2006. Evaluación de la calidad del aire mediante el uso de Bioindicadores en la provincia de San Luis, Argentina. Rev. Int. Contam. Ambient. 22(1):49-58.

SEAWARD, MRD. 1993. Lichens and sulphur dioxide air pollution: field studies. Environ. Rev. 1(2):73-91.

SYERS, JK & IK ISKANDAR. 1973. Pedogenetic significance of lichens. Pp. 225-248 en: Ahmadjian V & ME Hale (eds.). The lichens. Academic Press, Inc., New York.

TAUSZ, M; LJ DE KOK; I STULEN & D GRILL. 1996. Physiological responses of Norway Spruce Trees elevated CO2 and SO2. Journal of Plant Physiology 148:362-367.

TRETIACH, M; P CRISAFULLI; N IMAI; H KASHIWADANI; KH MOON; ET AL. 2007. Efficacy of a biocide tested on selected lichens and its effects on their substrata. International Biodeterioration & Biodegradation 59;44-54.

VAN DOBBEN, HF. 1996. Decline and recovery of epiphytic lichens in an agricultural area in the Netherlands (1900-1988). Nova Hedwigia 62:477-485.

WEBBER, PJ; JT ANDREWS. 1973. Lichenometry: a commentary. Arct. Alp. Res. 5(4):295-302.

Wintermans, JFGM & A De Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their phaeophytins in ethanol. Biochimica et Biophysica Acta 169:448-453.

Descargas

Publicado

2011-12-01

Cómo citar

Carrera, M. F., & Carreras, H. A. (2011). Efectos de la aplicación de glifosato sobre parámetros químico-fisiológicos en Usnea amblyoclada (Müll. Arg.) Zahlbr. Ecología Austral, 21(3), 353–361. Recuperado a partir de https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1278

Número

Sección

Comunicaciones breves