Ecosistemas acuáticos continentales y sus servicios: Enfoques y escenarios de aplicación en el mundo real

  • Miguel Pascual Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Argentina.
  • María P. Barral INTA, Centro Regional Buenos Aires Sur. Estación Experimental Agropecuaria Balcarce. Balcarce, Argentina.
  • María Poca Grupo de Estudios Ambientales, IMASL, Universidad Nacional de San Luis, CONICET, San Luis, Argentina.
  • Natalia Pessacg Instituto Patagónico para el Estudio de los Ecosistemas Continentales, IPEEC-CONICET, Puerto Madryn, Argentina.
  • Leandro García Silva Unidad de Planificación Estratégica, Autoridad de Cuenca Matanza Riachuelo (ACUMAR). Buenos Aires, Argentina.
  • Ricardo Albariño Instituto de Investigaciones en Biodiversidad y Medio Ambiente, INIBIOMA, Universidad Nacional del Comahue - CONICET. San Carlos de Bariloche, Argentina.
  • María E. Romero Dirección Nacional de Gestión Ambiental del Agua y los Ecosistemas Acuáticos, Ministerio de Ambiente y Desarrollo Sostenible de la Nación (MAyDS). CABA, Argentina.
  • Esteban G. Jobbágy Grupo de Estudios Ambientales, IMASL, Universidad Nacional de San Luis, CONICET, San Luis, Argentina.
Palabras clave: conservación, recursos acuáticos, políticas hídricas, Argentina

Resumen

Los ecosistemas acuáticos continentales (EAC) constituyen elementos de gran valor natural, social y cultural. Además, son sumideros naturales de distintos procesos que involucran la interfase agua-tierraatmósfera y, por lo tanto, los primeros a nivel territorial en mostrar síntomas de deterioro ambiental. En este artículo analizamos el enfoque de los servicios ecosistémicos (SE) y su aplicación a los EAC. Nuestro objetivo primario es proveer una introducción y revisión crítica del enfoque, y sus prácticas para científicos, técnicos y funcionarios interesados en los problemas del agua. Presentamos el enfoque en general y realizamos un desglose de los principales elementos constitutivos del análisis, en particular de aquellos que consideramos más relevantes para impulsar una mirada ambiental e integral de los EAC. También revisamos los aspectos más contenciosos del enfoque de los SE y discutimos en qué medida representan matices prácticos más que brechas conceptuales. Luego, caracterizamos distintos escenarios que brindan oportunidades para su aplicación desde la óptica de la administración ambiental, incluyendo una revisión de soluciones basadas en la naturaleza en comparación con sus contrapartes basadas en infraestructura gris. Más allá de todas las características positivas que pudieran atribuirse al enfoque, reconocemos incorporarlo de manera efectiva en los ámbitos de decisión tradicionales de los recursos hídricos de nuestro país no será automática. En este sentido, proponemos que es necesario alinear el enfoque de los SE con el del manejo integrado de los recursos hídricos, que es la base de los ‘Principios rectores de la política hídrica de la República Argentina’ adoptados por la Nación y las provincias.

Foto: Microsoft Argentina

Citas

Abell, R., et al. 2017. Beyond the Source: The Environmental, Economic and Community Benefits of Source Water Protection. The Nature Conservancy, Arlington, VA, USA.

Aigo, J., J. C. Skewes, C. Bañales-Seguel, W. Riquelme Maulén, S. Molares, D. Morales, M. I. Ibarra, and D. Guerra. 2020. Waterscapes in Wallmapu: lessons from Mapuche perspectives. Geographical Review. https://doi.org/10.1080/00167428.2020.1800410.

Balvanera, P., I. Siddique, L. Dee, A. Paquette, F. Isbell, A. González, and J. N. Griffin. 2013. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. BioScience 64:49-57. https://doi.org/10.1093/biosci/bit003.

Barral, M. P., S. Villarino, C. Levers, M. Baumann, T. Kuemmerle, and M. Mastrangelo. 2020. Widespread and major losses in multiple ecosystem services as a result of agricultural expansion in the Argentine Chaco. Journal of Applied Ecology 00:1-14. https://doi.org/10.1111/1365-2664.13740.

Barros, V., C. Vera (coordinators), and collaborators. 2014. Secretaría de Ambiente y Desarrollo Sustentable de la Nación 2014: Tercera Comunicación Nacional sobre Cambio Climático. Cambio Climático en Argentina; Tendencias y Proyecciones (CIMA). URL: tinyurl.com/y8wjpvej.

Bekessy, S. A., M. C. Runge, A. M. Kusmanoff, D. A. Keith, and B. A. Wintle. 2018. Perspective: Ask not what nature can do for you: A critique of ecosystem services as a communication strategy. Biological Conservation 224:71-74. https://doi.org/10.1016/j.biocon.2018.05.017.

Benedict, M., and E. McMahon. 2006. Green infrastructure. Linking Landscapes and Communities. Island Press.

Braat, L. C., and R. de Groot. 2012. The ecosystem services agenda: bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosystem Services 1:4-15. https://doi.org/10.1016/j.ecoser.2012.07.011.

Braat, L., and P. ten Brink. 2008. The cost of policy inaction: the case of not meeting the 2010 biodiversity target. Study for the European Commission, DG Environment. Alterra report 1718, Wageningen.

Bracalenti, A., O. Müller, and E. Berbery. 2017. Efectos remotos del cambio de uso de suelo en el clima del sudeste de Sudamérica. In XXVIII Reunión Científica de la AAGG y III Simposio sobre Inversión y Procesamiento de Señales en Exploración Sísmica (La Plata, 2017).

Brauman, K. A. 2015. Hydrologic ecosystem services: linking ecohydrologic processes to human well‐being in water research and watershed management. Wiley Interdisciplinary Reviews: Water 2:345-358. https://doi.org/10.1002/wat2.1081.

Bremer, L. L., et al. 2016. One size does not fit all: Natural infrastructure investments within the Latin American Water Funds Partnership. Ecosystem Services 17:217-236. https://doi.org/10.1016/j.ecoser.2015.12.006.

Cardinale, B. J. 2011. Biodiversity improves water quality through niche partitioning. Nature 472:86-89. https://doi.org/10.1038/nature09904

Cardinale, B. J., J. E. Duffy, A. González, D. U. Hooper, C. Perrings, P. Venail, and A. P. Kinzig. 2012. Biodiversity loss and its impact on humanity. Nature 486:59-67. https://doi.org/10.1038/nature11148.

Carson, R. 1962. Silent Spring. Houghton Mifflin.

Cimon-Morin, J., M. Darveau, and M. Poulin. 2013. Fostering synergies between ecosystem services and biodiversity in conservation planning: A review. Biological Conservation 166:144-154. https://doi.org/10.1016/j.biocon.2013.06.023.

Cingolani, A., M. Poca, J. I. Whitworth Hulse, M. Giorgis, V. Vaieretti, L. Herrero, L. Navarro Ramos, and D. Renison. En Prensa. Fire reduces dry season low flows in a subtropical highland of central Argentina. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2020.125538.

Cohen-Shacham, E., G. Walters, C. Janzen, and S. Maginnis. 2016. Nature-based solutions to address global societal challenges. IUCN, Gland, Switzerland, 97. https://doi.org/10.2305/IUCN.CH.2016.13.en.

Costanza, R., R. d'Arge, R. de Groot, et al. 1997. The value of the world's ecosystem services and natural capital. Nature 387:253-260. https://doi.org/10.1038/387253a0.

Cook, B. R., and C. J. Spray. 2012. Ecosystem services and integrated water resource management: Different paths to the same end? Journal of Environmental Management 109:93-100. https://doi.org/10.1016/j.jenvman.2012.05.016.

Covino, T. 2017. Hydrologic connectivity as a framework for understanding biogeochemical flux through watersheds and along fluvial networks. Geomorphology 277:133-144. https://doi.org/10.1016/j.geomorph.2016.09.030.

Daily, G. C. 1997. Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, USA.

Dardis, N. V. 2013. Principios Rectores de Política Hídrica de la República Argentina: 10 años de participación y consenso. Natalia Verónica Dardis, con colaboración de César Magnani et al. 1a ed. - Buenos Aires. COHIFE.

de Bello, F., S. Lavorel, S. Díaz, R. Harrington, J. H. Cornelissen, R. D. Bardgett, R. D., and P. M. da Silva. 2010. Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation 19:2873-2893. https://doi.org/10.1007/s10531-010-9850-9.

de Groot, R. S., R. Alkemade, L. Braat, L. Hein, and L. Willemen. 2010. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity 7:260-272. https://doi.org/10.1016/j.ecocom.2009.10.006.

Díaz, S., U. Pascual, M. Stenseke, B. Martín-López, R. T. Watson, Z. Molnár, and S. Polasky. 2018. Assessing nature's contributions to people. Science 359:270-272. https://doi.org/10.1126/science.aap8826.

Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. I. Kawabata, D. J. Knowler, C. Lévêque, and C. A. Sullivan. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81:163-182. https://doi.org/10.1017/S1464793105006950.

Durance, I., M. W. Bruford, R. Chalmers, N.A. Chappell, M. Christie, B.J. Cosby, and G. Woodward. 2016. The challenges of linking ecosystem services to biodiversity: lessons from a large-scale freshwater study. Advances in Ecological Research 54:87-134. https://doi.org/10.1016/bs.aecr.2015.10.003.

Farley, J. 2012. Ecosystem services: the economics debate. Ecosystem Services 1:40-49. https://doi.org/10.1016/j.ecoser.2012.07.002.

Giménez, R., J. L. Mercau, F. E. Bert, S. Kuppel, G. Baldi, J. Houspanossian, and E. G. Jobbágy. 2020. Hydrological and productive impacts of recent land‐use and land‐cover changes in the semiarid Chaco: Understanding novel water excess in water scarce farmlands. Ecohydrology 13(8):e2243. https://doi.org/10.1002/eco.2243.

Goldman-Benner, R. L., S. Benítez, T. Boucher, A. Calvache, G. Daily, P. Kareiva, and A. Ramos. 2012. Water funds and payments for ecosystem services: practice learns from theory and theory can learn from practice. Oryx 46:55-63. https://doi.org/10.1017/S0030605311001050.

GWP. 2000. Integrated Water Resource Management. In Technical Advisory Committee Background Paper Number 4. Global Water Partnership, Stockholm.

Haines-Young, R., M. Potschin-Young, and B. Czúcz. 2016. Report on the use of CICES to identify and characterise the biophysical, social and monetary dimensions of ES assessments. Deliverable D4.1 EU Horizon 2020 ESMERALDA Project, Grant agreement No. 642007. URL: www.esmeralda-project.eu/documents/1/.

Hermelingmeier, V., and K. A. Nicholas. 2017. Identifying Five Different Perspectives on the Ecosystem Services Concept Using Q Methodology. Ecological Economics 136:255-265. https://doi.org/10.1016/j.ecolecon.2017.01.006.

Hooper, D. U., F. S. Chapin, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, and B. Schmid. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological monographs, 75:3-35. https://doi.org/10.1890/04-0922.

Humboldt, A., and A. Bonpland. 1822. Personal narrative of travels to the equinoctial regions of the new continent during the years 1799-1804. Printed for Longman, Hurst, Rees, Orme, and Brown. Londres. https://doi.org/10.5962/bhl.title.87587.

Jin, G., X. Deng, S. S. Hasan, C. Zhao., and J. Gibson. 2018. Hydrological Ecosystem Services for Integrated Water Resources Management. In Deng, X. and J. Gibson (eds.). River Basin Management. Ecohydrology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0841-2_6-1.

Jobbágy, E. G., M. Poca, M. D. Nosetto, G. Castellanos, S. Otta, M. P. Covolo, J. Salva, and E. Juaneda. 2018. Cuenca del Río Mendoza. Análisis de Factibilidad para Fondos de Agua. Alianza Latinoamericana de Fondos de Agua.

Jobbágy, E. G., M. Nosetto, C. Santoni, and G. Baldi. 2008. El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana. Ecología Austral 18:305-322.

Kareiva, P., H. Tallis, T. H. Ricketts, G. C. Daily, and S. Polasky. 2011. Natural Capital: Theory and Practice of Mapping Ecosystem Services (Oxford Univ Press, New York), 1st edition. https://doi.org/10.1093/acprof:oso/9780199588992.001.0001.

Kenter, J. O. 2018. IPBES: don’t throw out the baby whilst keeping the bathwater; Put people’s values central, not nature’s contributions. Ecosystem Services 33:40-43. https://doi.org/10.1016/j.ecoser.2018.08.002.

Laterra, P., L. Nahuelhual, M. Gluch, X. Sirimarco, G. Bravo, and A. Monjeau. 2019. How are jobs and ecosystem services linked at the local scale? Ecosystem services 35:207-218. https://doi.org/10.1016/j.ecoser.2018.11.011.

Lee, S. J., and E. H. Berbery. 2012. Land cover change effects on the climate of the La Plata Basin. Journal of Hydrometeorology 13:84-102. https://doi.org/10.1175/JHM-D-11-021.1.

Likens, G. E., and F. H. Bormann. 1974. Linkages between Terrestrial and Aquatic Ecosystems. BioScience 24:447-456. https://doi.org/10.2307/1296852.

Lüke, A., and J. Hack, J. 2018. Comparing the Applicability of Commonly Used Hydrological Ecosystem Services Models for Integrated Decision-Support. Sustainability 10:346. https://doi.org/10.3390/su10020346.

Macadam, C. R., and J. A. Stockan. 2015. More than just fish food: ecosystem services provided by freshwater insects. Ecological Entomology 40:113-123. https://doi.org/10.1111/een.12245.

Marsh, G.P. 1864. Man and Nature; or, Physical Geography as Modified by Human Actions. Charles Scribner, New York. Pp. 560. https://doi.org/10.5962/bhl.title.163042.

Martínez-Alonso, C., et al. (editores). 2010 Adaptación al cambio climático y servicios ecosistémicos en América Latina. Libro de actas del seminario internacional SIASSE2008. 1 ed. - Turrialba, CR : CATIE, 2010. Pp. 144: il. - (Serie técnica. Manual técnico / CATIE ; no. 99)

Masood, E. 2018. Battle over biodiversity. An ideological clash could undermine a crucial assessment of the world´s disappearing plant and animal life. Nature 560:423-425. https://doi.org/10.1038/d41586-018-05984-3.

Meyer, S. T., A Ebeling, N. Eisenhauer, L. Hertzog, H. Hillebrand, A. Milcu, E. De Luca, et al. 2016. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere 7(12):e01619. https://doi.org/10.1002/ecs2.1619.

McCauley, D. 2006. Selling out on nature. Nature 443:27-28. https://doi.org/10.1038/443027a.

McDonough, K., S. Hutchinson, T. Moore, and J. S. Hutchinson. 2017. Analysis of publication trends in ecosystem services research. Ecosystem Services 25:82-88. https://doi.org/10.1016/j.ecoser.2017.03.022.

Millenium Ecosystem Assessment. 2005. Ecosystems and Human Well-being: Synthesis (ed. By R. Hassan, R. Scholes and N. Ash). Island Press. Washington, D.C., USA.

Muir, J. 1901. Our National Parks. Houghton Mifflin and company. Boston, New York. https://doi.org/10.5962/bhl.title.53718.

Nosetto, M. D., R. Páez, S. I. Ballesteros, and E. G. Jobbágy. 2015. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agriculture, Ecosystems and Environment 206:60-70. https://doi.org/10.1016/j.agee.2015.03.009.

Pascual, M. A., T. Olivier, L. Brandizi, P. Rimoldi, H. A. Malnero, and G. Kaless. 2020. Cuenca del Río Chubut. Análisis de Factibilidad para Fondo de Agua. Mayo 2020. Alianza Latinoamericana de Fondos de Agua. Pp. 197. URL: tinyurl.com/y8d97pou.

Pasquini, A., and P. Depetris. 2007. Discharge trends and flow dynamics of South American rivers draining the southern Atlantic seaboard: An overview. J Hydrology 333:385-399. https://doi.org/10.1016/j.jhydrol.2006.09.005.

Pessacg, N., and S. Solman. 2012. Effects of land use changes on climate in southern South America. Climate Research 55:33-51. https://doi.org/10.3354/cr01119.

Pessacg, N., S. Flaherty, S. Solman, and M. Pascual. 2020. Climate change in Patagonia: Critical decrease in water resources. Journal of Theoretical and Applied Climatology 140:807-822. https://doi.org/10.1007/s00704-020-03104-8.

Poca, M., A. M. Cingolani, D. E. Gurvich, J. I. Whitworth-Hulse, and V. Saur Palmieri. 2018a. La degradación de los bosques de altura del centro de Argentina reduce su capacidad de almacenamiento de agua. Ecología Austral 28:235-248. https://doi.org/10.1002/eco.1981.

Poca, M., A. M. Cingolani, D. E. Gurvich, V. Saur Palmieri, and G. Bertone. 2018b. Water storage dynamics across different types of vegetated patches in rocky highlands of central Argentina. Ecohydrology 11(7):e1981. https://doi.org/10.1002/eco.1981.

Puig, A., H. F. Olguín Salinas, and J. A. Borús. 2016. Relevance of the Paraná River hydrology on the fluvial water quality of the Delta Biosphere Reserve. Environmental Science and Pollution Research 23:11430-11447. https://doi.org/10.1007/s11356-015-5744-4.

Samal, N. R., W. Wollheim, S. Zuidema, R. Stewart, Z. Zhou, M. M. Mineau, M. Borsuk, K. H. Gardner, S. Glidden, T. Huang, D. Lutz, G. Mavrommati, A. M. Thorn, C. P. Wake, and M. Huber. 2017. A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change. Ecology and Society 22:18. https://doi.org/10.5751/ES-09662-220418.

Schröter, M., E. H. Van der Zanden, A. P. van Oudenhoven, R. P. Remme, H. M. Serna‐Chávez, R. S. De Groot, and P. Opdam. 2014. Ecosystem services as a contested concept: a synthesis of critique and counter‐arguments. Conservation Letters 7:514-523. https://doi.org/10.1111/conl.12091.

Schomers, S., and B. Matzdorf. 2013. Payments for ecosystem services: A review and comparison of developing and industrialized countries. Ecosystem Services 6:16-30. https://doi.org/10.1016/j.ecoser.2013.01.002.

Tallis, H., J. Lubchenko, et al. 2014. A call for inclusive conservation. Nature 515:27-28. https://doi.org/10.1038/515027a.

TEEB. 2010. The economics of ecosystems and biodiversity: ecological and economic foundations. In Kumar, P. (ed.). Earthscal, London and Washington.

Udall, S. L. 1963. The Quiet Crisis. Holt, Rinehart and Winston. New York. Pp. 209.

UNEP. 2014. Green Infrastructure. Guide for water management. Ecosystem-based management approaches for water-related infrastructure projects. ISBN: 978-92-807-3404-1.

Vandewalle, M., M. T. Sykes, P. A. Harrison, G. W. Luck, P. Berry, R. Bugter, and D. Hering. 2008. Concepts of dynamic ecosystems and their services. The RUBICODE Project. Rationalising Biodiversity Conservation in Dynamic Ecosystems.

Vich, A. I. J., F. A. Norte, and C. Lauro. 2014. Análisis regional de frecuencias de caudales de ríos pertenecientes a cuencas con nacientes en la Cordillera de los Andes. Meteorológica 39:3-26

Villar, C. A., and C. Bonetto. 2000. Chemistry and nutrient concentrations of the Lower Paraná River and its floodplain marshes during extreme flooding. Archiv für Hydrobiologie 148:461-479. https://doi.org/10.1127/archiv-hydrobiol/148/2000/461.

Westman, W. E. 1977. How much are nature's services worth? Science 197:960-964. https://doi.org/10.1126/science.197.4307.960.

Williamson, C. E., W. Dodds, T. K. Kratz, and M. A. Palmer. 2008. Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Frontiers in Ecology and the Environment 6:247-254. https://doi.org/10.1890/070140.

Zagarola, J. A., C. B. Anderson, and J. R. Veteto. 2014. Perceiving Patagonia: An Assessment of Social Values and Perspectives Regarding Watershed Ecosystem Services and Management in Southern South America. Environmental Management 53:769-782. https://doi.org/10.1007/s00267-014-0237-7.

Ecosistemas acuáticos continentales y sus servicios: Enfoques y escenarios de aplicación en el mundo real
Publicado
2021-04-10
Sección
Sección Especial