Influencia de la vegetación en la variación espacial de la abundancia de microorganismos en el desierto del Monte, San Juan, Argentina

  • Ángela D. Vega Ávila Instituto de Biotecnología. Facultad de Ingeniería. Universidad Nacional de San Juan. Av. Libertador San Martín 1109 (Oeste), San Juan.
  • María E. Toro Instituto de Biotecnología. Facultad de Ingeniería. Universidad Nacional de San Juan. Av. Libertador San Martín 1109 (Oeste), San Juan.
  • Mario Baigori Planta Piloto de Procesos Industriales Microbiológicos Avenida Belgrano y Pasaje Caseros. Tucumán
  • Luciana Fernández Instituto de Biotecnología. Facultad de Ingeniería. Universidad Nacional de San Juan. Av. Libertador San Martín 1109 (Oeste), San Juan.
  • Fabio Vázquez Instituto de Biotecnología. Facultad de Ingeniería. Universidad Nacional de San Juan. Av. Libertador San Martín 1109 (Oeste), San Juan.
Palabras clave: grupos funcionales, actividades enzimáticas, parches de vegetación, interparches

Resumen

En los sistemas desérticos la vegetación frecuentemente se distribuye en parches. Asociados a estos parches, existen microorganismos que son importantes para el crecimiento de las plantas, ya que favorecen la absorción de nutrientes, fijan nitrógeno e intervienen en la descomposición de la materia orgánica y liberan enzimas fundamentales en el ciclo de los nutrientes. Los objetivos de este trabajo fueron: evaluar la abundancia de los principales grupos microbianos (bacterias, levaduras y hongos filamentosos); detectar y cuantificar bacterias con actividades enzimáticas degradadoras, asociadas a suelos y canopias de los parches de Bulnesia retama, Larrea divaricata e interparches con baja cobertura vegetal a fin de establecer posibles relaciones entre la distribución de la vegetación y los microorganismos responsables de la descomposición. No detectamos diferencias significativas en la abundancia de bacterias y levaduras entre los distintos tipos de micrositios, si bien observamos una mayor abundancia de hongos filamentosos en el suelo de los parches de L. divaricata con respecto a los de suelo desnudo. La proporción de colonias de bacterias aisladas con actividades enzimáticas (xilanolítica y amilolítica) fue mayor en los parches de L. divaricata y B. retama respecto a interparches. Las bacterias aisladas de hojas de L. divaricata presentaron actividad xilanolítica, amilolítica y celulolítica. Se encontró que en los parches existe una mayor abundancia de bacterias que en las hojas de las canopias de los vegetales, como así también mayor porcentaje de colonias de bacterias que presentaron alguna de las actividades enzimáticas involucradas en la descomposición de materia orgánica. Los resultados sugieren que podría existir una relación entre la abundancia de algunos grupos funcionales de bacterias y la distribución de la vegetación.

Citas

ABRAHAM, E; HF DEL VALLE; F ROIG; L TORRES; JO ARES; ET AL. 2009. Overview of the geography of the Monte Desert biome (Argentina). J. Arid Environ., 73:144-153.

ABRIL, A & EH BUCHER. 1999. The effects of overgrazing on soil microbial community and fertility in the Chaco dry savannas of Argentina. Appl. Soil Ecol., 12:159-167.

ABRIL, A; P BARTTFELD & EH BUCHER. 2005. The effects of fire and overgrazing disturbs on soil carbon balance in the dry Chaco forest. Forest Ecol. & Manag., 206:399-405.

ABRIL, A; P VILLAGRA & L NOE. 2009. Spatiotemporal heterogeneity of soil fertility in the Central Monte desert (Argentina). J. Arid Environ., 73:901-906.

AGUIAR, MR & OE SALA. 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Tree, 4:273-277.

AGUILERA, EL; JR GUTIÉRREZ & PL MERSERVE. 1999. Variation in soil micro-organisms and nutrients underneath and outside the canopy of Adesmia bedwellii (Papilionaceae) shrubs in arid coastal Chile following drought and above average rainfall. J. Arid Environ., 42:61-70.

ALEF, K; P NANNIPIERE & C TRAZAR-CEPADA. 1995. Phosphatase activity. Pp. 335-344 en: Alef, K & P Nannipieri (eds.). Methods in Appl. Soil Microbiol. & Biochem. Academic Press, London, UK.

AON, MA; MN CABELLO; DE SARENA; AC COLANERI; MG FRANCO; ET AL. 2001. Spatio-temporal patterns of soil microbial and enzymatic activities in an agricultural soil. Appl. Soil Ecol., 18:239-254.

BADIANE, NNY; JL CHOTTE; E PATE; D MASSE & C ROULAND. 2001. Use of soil enzyme activities to monitor soil quality in natural and improved fallows in semi-arid tropical regions. Appl. Soil Ecol., 18:229-238.

BISIGATO, AJ; PE VILLAGRA; JO ARES & BE ROSSI. 2009. Vegetation heterogeneity in Monte Desert ecosystems: A multi-scale approach linking patterns and processes J. Arid Environ., 73:182-191.

BITTON, G; N LAHAV & Y HENIS. 1974. Movement and retention of Klebsiella aerogenes in soil columns. Plant & Soil, 40:373-380.

BOLTON, H; JL SMITH & SO LINK. 1993. Soil microbial biomass and activity of a disturbed and undisturbed shrub-steppe ecosystem. Soil Biol. & Biochem., 25:545-552.

CARRERA, AL; MJ MAZZARINO; MB BERTILLER; HF VALLE & EM CARRETERO. 2009. Plant impacts on nitrogen and carbon cycling in the Monte Phytogeographical Province, Argentina. J. Arid Environ., 73:192-201.

CABRERA, AL & A WILLINK. 1980. Regiones biogeográficas en América Latina. En: Eva Chesneau (eds.). Biogeografía de América Latina. Secretaría de la Organización de los Estados Americanos. Programa de Desarrollo Científico y Tecnológico, Capítulo 8. Serie de Biología. Monografía N° 13:29-107.

CORTÉS, M & J HUNZIKER. 1997. Isozymes in Larrea divaricata and Larrea tridentata (Zygophyllaceae): A study of two amphitropical vicariants and autopolyploidy. Genetica, 101:115-124.

DAVISON, J. (1988). Plant benefical bacteria. Biotechnol., 6:282-286.

DE FINA, AL. 1992. Aptitud Agroclimática de la República Argentina. Academia Nacional de Agronomía y Veterinaria Buenos Aires. Pp. 402.

DENARIE, J; F DEBELLE & C ROSENBERG. 1992. Signaling and host range variation in inoculation. Ann. Rev. Microbiol., 46:487-531.

DENG, SP & MA TABATABAI. 1995. Cellulase activity of soils: Effect of trace elements. Soil Biol. & Biochem., 27:977-979.

DEKKER, RFH & GN RICHARDS. 1976. Hemicellulases, their ocurrence, purification, properties and mode of action. Advances in Carbohydrates Chemistry & Biochemistry, 32:277-352.

DIEDHIOU, S; EL DOSSA; AN BADIANE; I DIEDHIOU; M SÈNE; ET AL. 2009. Decomposition and spatial microbial heterogeneity associated with native shrubs in soils of agroecosystems in semi-arid Senegal. Pedobiologia, 52:273-286.

DI RIENZO, J; M BALZARINI; F CASANOVES; L GONZÁLEZ; M TABLADA; ET AL. 2002. InfoStat Estudiantil versión 2.0. Universidad Nacional de Córdoba. Estadística y Diseño. F.C.A.

DICK, RP; D BREAKWILL & R TURCO. 1996. Soil enzyme activities and biodiversity measurements as integrating biological indicators. Pp. 247-272 en: Doran, JW & AJ Jones (eds.). Handbook of Methods for Assessment of Soil Quality. Soil Sci. Soc. Am., Madison.

EDITORIAL COMMITTEE. 1996. Soil physical and chemical analysis and description of soil profiles. Standards Press of China, Beijing, China (in Chinese).

FARNSWORTH, RB; EM ROMMEY & A WALLACE. 1977. Nitrogen fixation by microfloral- higher plant associations in arid to semiarid environments. Pp. 17-19 en: West, NE & JJ Skujins (eds.). Nitrogen in Desert Ecosystems. Stroudsburg, PA. Dowden, Hutchinson & Ross Inc. USA.

FRIONI, L.1999. Crecimiento microbiano y su control. Efecto de factores ambientales. Capítulo 4:65-85. Microbiología básica, ambiental y Agrícola. Editorial de la Fundación Universidad Nacional de Rio Cuarto. Argentina. ISBN 950-885110.

GONZÁLEZ-POLO, M & A AUSTIN. 2009. Spatial heterogeneity provides organic matter refuges for soil microbial activity in the Patagonian steppe, Argentina. Soil Biol. & Biochem., 41:1348-1351.

HMERLYNCK, E; J MCAULIFFE; E MCDONALD & S SMITH. 2002. Ecological responses of two Mojave desert shrubs to soil horizon development and soil water dynamics. Ecology, 83(3):768-779.

HORWATH, WR & LF ELLIOTT. 1996. Ryegrass straw component decomposition during mesophilic and thermophilic incubations. Biol.Fertil.Soils, 21:227-232.

KURTZMAN, CP. 2000. Three new ascomycetous yeasts from insect-associated to arboreal habitats. Canadian J. Microbiol., 46:50-58.

LEE, H; P BIELY; RK LATTA; MFS BARBOSA & H SCHNEIDER. 1986. Utilization of xylan by yeasts and its conversion to ethanol by Pichia stipitis strains. Appl. Environ. Microbiol., 52:320-324.

MAMILOV, ASH & OM DILLY. 2002. Soil microbial eco-physiology as affected by short-term variations in environmental conditions. Soil Biol. & Biochem., 34:1283-1290.

MARTÍNEZ CARRETERO, E. 1993. Regional development and desertification control through ecologicalk farming: three examples in Argentina. Desertification Bull., 23:35-38.

MARTÍNEZ CARRETERO, E & AD DALMASSO. 1992. Litter yield in shrubs of Larrea in the Andean piedmont of Mendoza, Argentina. Vegetation, 101:21-33.

NAKAS, JP & DA KLEIN. 1980. Mineralization capacity of bacteria and fungi from the rhizosphere-rhizoplane of a semiarid grassland. App. Environm. Microbiol., 39:113-117.

OBERMEYER, WR; SM MUSSER; JM BETZ; RE CASEY; AE POHLAND; ET AL. 1995. Chemical studies of phytoestrogens and related compounds in dietary supplements: Flax and Chaparral. Proc. Soc. Exp. Biol. Med., 208:6-12.

PALACIOS, RA & JH HUNZIKER. 1984. Revisión taxonómica del género Bulnesia (Zygophyllaceae). Darwiniana, 25:299-320.

PAVEL, R; J DOYLE & Y STEINBERGER. 2004. Seasonal patterns of cellulase concentration in desert soil. Soil Biol. & Biochem., 36:549-554.

PUCHETA, E; M LLANOS; C MEGLIOLI; M GAVIORNO; M RUIZ; ET AL. 2006. Litter decomposition in a sandy Monte desert of western Argentina: Influences of vegetation patches and summer rainfall. Austral Ecol., 31:808-816.

RIBAS-FERNÁNDEZ, Y; L QUEVEDO-ROBLEDO & E PUCHETA. 2009. Pre- and post-dispersal seed loss and soil seed dynamics of the dominant Bulnesia retama (Zygophyllaceae) shrub in a sandy Monte desert of western Argentina. J. Arid Environ., 73:14-21.

RUNDEL, P; PE VILLAGRA; MO DILLON; SA ROIG-JUÑENT & G DEBANDI. 2007. Arid and Semi-Arid Ecosystems. Pp. 158-183 en: Veblen, TT; K Young; & AE Orme (eds.). The Physical Geography of South America. Oxford University Press.

SAETRE, P & M SARTK. 2005. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species. Oecologia, 142:247-260.

SCHLESINGER, WH & AM PILMANIS. 1998. Plant-soil interactions in deserts. Biogeochem., 42:169-187.

SCHLOTER, M; O DILLY & JC MUNCH. 2003. Indicators for evaluating soil quality. Agriculture, Ecosystems & Environ., 98:255-262.

SMITH, JL; JJ HALVORSON & H BOLTON. 1994. Spatial relationships of soil microbial biomass and C and N mineralization in a semi-arid shrub-steppe ecosystem. Soil Biol. & Biochem., 26:1151-1159.

SPENCER, DM; JFT SPENCER; E FENGLER & LI DE FIGUEROA. 1995. Yeasts associated with algarrobo trees (Prosopis spp.) in northwest Argentina: a preliminary report. J. Ind.Microbiol., 14:472-474.

SPENCER, DM; JFT SPENCER; LI DE FIGUEROA; O GARRO & E FENGLER. 1996. Yeasts associated with pods and exudates of algarrobo trees (Prosopis spp.) and species of columnar cacti in northwest Argentina. Appl. Microbiol. Biotechnol., 44:736-739.

SPONSELLER, RA & SG FISHER. 2008. The influence of drainage networks on patterns of soil respiration in a desert catchment. Ecol., 89:1089-1100.

STEGE, PW; RC DAVICINO; AE VEGA; YA CASALIB; S CORREACI; ET AL. 2005. Antimicrobial activity of aqueous extracts of Larrea divaricata Cav (jarilla) against Helicobacter pylori. Phytomedicine, 13:724-727.

STRAHLER, AN. 1992. Geología Física. Editorial Omega. Pp. 510.

STRAUSS, MLA; NP JOLLY; MG LAMBRECHTS & P VAN RENSBURG. 2001. Screening for the production of extracellular hydrolytic enzymes by non- Sacchraromyces wine yeasts. J. Appl. Microbiol., 91:182-190.

TORRES, PA & A ABRIL. 2005. Microbial succession in litter decomposition in the semi-arid Chaco woodland. Soil Biol. & Biochem., 37:49-54.

TORO, ME; NP ORO; AD VEGA; MC NALLY; YP MATURANO; ET AL. 2005. Diversidad de levaduras en canopias y suelos asociados a Bulnesia retama y Larrea divaricata. Revista Argentina de Microbiología, 37:209-213.

TORSVIK, V; FL DAAE; RA SANDAA & L OVREAS. 1998. Review article: Novel techniques for analyzing microbial diversity in natural and perturbed environments. J. Biotechnol., 64:53-62.

VÁZQUEZ, F; MD VALLEJO HERRERA; LIC DE FIGUEROA & ME TORO. 2004. Extracellular hydrolytic enzymes produced by yeasts. Pp. 283-298 en: Spencer, JFT & ALR de Spencer (eds.). Environmental Microbiology. Methods and Protocols. Vol. 16, chapter 30. Humana Press, Totowa, New Jersey. E-ISBN 1-58829-116-2.

VILELA, A; ML BOLKOVIC; P CARMANCHAHI; M CONY; D DE LAMO; ET AL. 2009. Past, present and potential uses of native flora and wildlife of the Monte Desert. J. Arid Environ., 73:238-243.

VISHNEVESTKY, S & Y STEINBERGERT. 1997. Bacterial and fungal dynamics and their contribution to microbial biomass in desert soil. J. Arid Environ., 37:83-90.

WEAVER, RW; JS ANGLE & PS BOTTOMLEY. 1994. Methods of Soil Analysis. Part 2. Microbiological & Biochemical Properties. N°. 5. Soil Sci. Soc. Am., Madison. USA.
Publicado
2010-12-01