Biomasa individual y poblacional de arbustos dominantes en estepas patagónicas pastoreadas

  • Gastón R. Oñatibia Cátedra de Ecología-IFEVA, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires/CONICET. Buenos Aires, Argentina.
  • Martín R. Aguiar Cátedra de Ecología-IFEVA, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires/CONICET. Buenos Aires, Argentina.
  • Pablo A. Cipriotti Departamento de Métodos Cuantitativos y Sistemas de Información, Facultad de Agronomía, Universidad de Buenos Aires/CONICET. Buenos Aires, Argentina.
  • Fernando Troiano Cátedra de Ecología-IFEVA, Departamento de Recursos Naturales y Ambiente, Facultad de Agronomía, Universidad de Buenos Aires/CONICET. Buenos Aires, Argentina.
Palabras clave: Adesmia volckmannii, ecosistemas semi-áridos, ecuaciones alométricas, leñosas, Mulinum spinosum, Senecio filaginoides

Resumen

Estimating aboveground biomass of vegetation is essential for population, community and ecosystem studies. In systems dominated or co-dominated by woody species, biomass estimation is difficult, and rapid and non-destructive methods are needed. In this study, we describe biomass distribution in different components (i.e., wood, leaves) and how this changes with shrub size for the three dominant species of shrubs in the Occidental District of the Patagonian steppe. We also describe the population size structure of the three species in grazed fields and estimate their contribution to total abundance and biomass through a non-destructive method. We developed allometric equations to estimate aboveground biomass components of individual shrubs from structural descriptors (i.e., diameter and height of the crown), sampling individual plants of different sizes. The variable that best predicted biomass of the three species was the sum of the height and the average diameter of the crown (calculated with the largest diameter and its perpendicular). Allometric models for each species explained more than 83% of the variability of individual aboveground biomass. At the individual level, species had different proportions of wood, leaves and specific wood weight. Increasing shrub size was accompanied by changes in the proportion of leaves to wood, and in some cases, the percentage of dead crown. At the population level, the three species differed in size distribution in moderately grazed fields. Development of allometric models from a population perspective is important to study demographic processes that drive community and ecosystem responses to environmental and land-use changes.

Citas

AGUIAR, MR & OE SALA. 1998. Interaction among grasses, shrubs, and herbivores in Patagonian grass-shrub steppes. Ecología Austral, 8:201-210.

AGUIAR, MR & OE SALA. 1999. Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends in Ecology and Evolution, 14:273-277.

AUSTIN, AT & CL BALLARÉ. 2010. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. PNAS, 107:4618-4622.

BONVISSUTO, G; O MORICZ DE TECSO; O ASTIBIA & J ANCHORENA. 1983. Resultados preliminares sobre los hábitos dietarios de ovinos en un pastizal semidesértico de Patagonia. Informe Investigación Agropecuaria (INTA), 36:243-253.

BRISKE, DD. 1991. Developmental morphology and physiology of grasses. Pages 85-108 in: Heitschmidt, RK & JW Stuth (eds.). Grazing management. An ecological perspective. Timber Press, Portland.

BROWN, S; AJR GILLESPIE & AE LUGO. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35:881-902.

BUCCI, SJ; FG SCHOLZ; G GOLDSTEIN; FC MEINZER & ME ARCE. 2009. Soil water availability and rooting depth as determinants of hydraulic architecture of Patagonian woody species. Oecologia, 160: 631-641.

CABRERA, A. 1976. Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería, Tomo 2, Fascículo 1. ACME, Buenos Aires.

CAVAGNARO, FP; RA GOLLUSCIO; DF WASSNER & DA RAVETTA. 2003. Caracterización química de arbustos patagónicos con diferente preferencia por los herbívoros. Ecología Austral, 13:215-222.

CIPRIOTTI, PA. 2006. La dinámica de los parches de vegetación en la estepa Patagónica. Tesis doctoral. Escuela para Graduados “Ing. Agr. Alberto Soriano”. Facultad de Agronomía. Universidad de Buenos Aires, Argentina.

CIPRIOTTI, PA & MR AGUIAR. 2010. Interactions network enable coexistence in a shrub-grass steppe. Journal of Vegetation Science, en prensa.

FERNÁNDEZ, OA & CA BUSSO. 1999. Arid and semi- arid rangelands: two-thirds of Argentina. Rala Reports, 200:41-60.

FERNÁNDEZ, RJ & JM PARUELO. 1988. Root systems of two patagonian shrubs: A quantitative description using a geometrical method. Journal of Range Management, 41:220-223.

FERNÁNDEZ, RJ; OE SALA & RA GOLLUSCIO. 1991. Woody and herbaceous aboveground production of a Patagonian steppe. Journal of Range Management, 44:434-437.

FLOMBAUM, P & OE SALA. 2007. A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. Journal of Arid Environments, 69:352-358.

FLOMBAUM, P & OE SALA. 2009. Cover is a good predictor of aboveground biomass in arid systems. Journal of Arid Environments, 73:597-598.

GOLLUSCIO, RA & OE SALA. 1993. Plant functional types and ecological strategies in Patagonian forbs. Journal of Vegetation Science, 4:839-846.

GOLLUSCIO, RA; OE SALA & WK LAUENROTH. 1998. Differential use of large rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia, 115:17-25.

GOLLUSCIO, RA; VA DEREGIBUS & JM PARUELO. 1998. Sustainability and range management in the Patagonian steppes. Ecología Austral, 8:265-284.

GOLLUSCIO, RA; M OESTERHELD & MR AGUIAR. 2005. Phenology of twenty five Patagonian species related to their life form. Ecography, 28: 273-282.

GOLLUSCIO, RA; A FAIGÓN & M TANKE. 2006. Spatial distribution of roots and nodules and ?15 N evidence of nitrogen fixation in Adesmia volckmannii; a Patagonian leguminous shrub. Journal of Arid Environments, 67:328-335.

GOODALL, DW & RA PERRY. 1979. Arid-lands ecosystems: Structure, Functioning and Management. Volumen 1. Cambridge University Press, Cambridge, p. 881.

GRAPHPAD PRISM 5.0. 2007. GraphPad Software, Inc. San Diego, California. USA.

HAASE, R & P HAASE. 1995. Above-ground biomass estimates for invasive trees and shrubs in the Pantanal of Mato Grosso, Brazil. Forest Ecology and Management, 73:29-35.

HACKE, U; JS SPERRY; WP POCKMAN; SD DAVIS & KA MCCULLOH. 2001. Trends in wood density and structure are linked to prevention of xylem implosion by negative pres-sure. Oecologia, 126:457-461.

HIERRO, JL; LC BRANCH; D VILLAREAL & KL CLARK. 2000. Predictive equations for biomass and fuel characteristics of Argentine shrubs. Journal of Range Management, 53:617-621.

HUGHES, RF; J KAUFFMAN & V JARAMILLO. 1999. Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of México. Ecology, 80:1892-1908
.
INFOSTAT 2.0. 2002. Grupo Infostat. FCA. Universidad Nacional de Córdoba, Argentina.

JENKINS, JC; RA BIRDSEY & Y PAN. 2001. Biomass and NPP estimation for the mid-Atlantic region (USA) using plot-level forest inventory data. Ecological Applications, 11:1174-1193.

JOBBAGY, E; JM PARUELO & RJC LEÓN. 1995. Estimación del régimen de precipitación a partir de la distancia a la cordillera en el noroeste de la Patagonia. Ecología Austral, 5:47-54.

KELLER, M; M PALACE & G HURTT. 2001. Biomass estimation in the Tapajos National Forest, Brazil: examination of sampling and allometric uncertainties. Forest Ecology and Management, 154:371-382.

KUMAR, M; SJ GEORGE; V JAMALUDHEEN & TK SURESH. 1998. Comparison of biomass production, tree allometry and nutrient use efficiency of multipurpose trees grown in woodlot and silvopastoral experiments in Kerala, India. Forest Ecology and Management, 112:145-163.

LEÓN, RJC & MR AGUIAR. 1985. El deterioro por uso pasturil en estepas herbáceas patagónicas. Phytocoenologia, 13:181-196.

LEÓN, RJC; D BRAN; M COLLANTES; JM PARUELO & A SORIANO. 1998. Grandes unidades de vegetación de la Patagonia extra-andina. Ecología Austral, 8:125-144.

MONTÈS, N. 2009. A non-destructive method to estimate biomass in arid environments: A comment on Flombaum and Sala (2007). Journal of Arid Environments, 73:599-601.

MUUKKONEN, P. 2007. Generalized allometric volume and biomass equations for some tree species in Europe. European Journal of Forest Research, 126:157-166.

NÁVAR, J; E MÉNDEZ; A NÁJERA; J GRACIANO; V DALE; ET AL. 2004. Biomass equations for shrubs species of Tamaulipan thornscrub of North-eastern Mexico. Journal of Arid Environments, 59:657-674.

NELSON, BW; R MESQUITA; JLG PEREIRA; SGA SOUZA; GT BATISTA; ET AL. 1999. Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management, 117:149-167.

NOYMEIR, I. 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4:25-41.

OKELLO, BD; TG O’CONNOR & TP YOUNG. 2001. Growth, biomass estimates, and charcoal production of Acacia drepanolobium in Laikipia, Kenya. Forest Ecology and Management, 142:143-153.

PARUELO, JM; MR AGUIAR & RA GOLLUSCIO. 1988. Soil water availability in the Patagonian arid steppe: gravel content effect. Arid Soil Research and Rehabilitation, 2:67-74.

SALA, OE; RA GOLLUSCIO; WK LAUENROTH & A SORIANO. 1989. Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia, 81:501-505.

SAMBA, SAN; C CAMIRÉ & HA MARGOLIS. 2001. Allometry and rainfall interception of Cordyla pinnata in a semi-arid agroforestry parkland, Senegal. Forest Ecology and Management, 154:277-288.

SAMPAIO, EVSB & GC SILVA. 2005. Biomass equations for Brazilian semiarid caatinga plants. Acta Bot. Bras, 19:935-943.

SANKARAN, M; NP HANAN; RJ SCHOLES; J RATNAM; DJ AUGUSTINE; ET AL. 2005. Determinants of woody cover in African Savannas. Nature, 438:846-849.

SCHLESINGER, WH; JF REYNOLDS; GL CUNNINGHAM; LF HUENNEKE; WM JARRELL; ET AL. 1990. Biological feedbacks in global desertification. Science, 247:1043-1048.

SCHROEDER, P; S BROWN; J MO; R BIRDSEY & C CIESZEWSKI. 1997. Biomass estimation for temperate broadleaf forest of the United States using inventory data. Forest Science, 43:424-434.

SORIANO, A. 1956. Aspectos ecológicos y pastoriles de la vegetación Patagónica relacionados con su estado y capacidad de recuperación. Revista de Investigaciones Agrícolas, 10:349-372.

SORIANO, A; CP MOVIA; & RJC LEÓN. 1983. Vegetation In: Deserts and semi-deserts of Patagonia. Pp. 440-454 in: West, NE (ed.). Temperate deserts and semi-deserts of the world. Vol. 5 of Ecosystems of the World (ed. in chief: Goodall, DW). Elsevier Publ. Co. Amsterdam-Oxford-New York.

TER-MIKAELIAN, MT & MD KORZUKHIN. 1997. Biomass equations for sixty-five North American tree species. Forest Ecology and Management, 97:1-24.

USÓ, JL; L MATEU; T KARJALAINEN & P SALVADOR. 1997. Allometric regression equations to determine aerial biomasses of Mediterranean shrubs. Plant Ecology, 132:59-69.

WALTER, H. 1977. Vegetation of the Earth and ecological systems of the geobiosphere. Springer-Verlag, Berlin. Pp. 318.

WHITTAKER, RH & GM WOODWELL. 1968. Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. Journal of Ecology, 56:1-25.
Publicado
2010-12-01