Respuesta disuasiva del granívoro Zonotrichia capensis (Paseriformes: Emberizidae) frente a fenoles comunes en las semillas

  • Juan Manuel Ríos Laboratorio de Ecología Nutricional, IMIBIO (Instituto Multidisciplinario de Investigación en Biología), CCT- CONICET, San Luis. Área de Ecología, Dept. de Bioquímica y Ciencias Biológicas. Univ. Nacional de San Luis, Argentina. Grupo de Investigación de Ecología del Desierto (Ecodes) Instituto Argentino de Investigación en Zonas Áridas (IADIZA), CCT-CONICET, Mendoza, Argentina.
  • Antonio Mangione Laboratorio de Ecología Nutricional, IMIBIO (Instituto Multidisciplinario de Investigación en Biología), CCT- CONICET, San Luis. Área de Ecología, Dept. de Bioquímica y Ciencias Biológicas. Univ. Nacional de San Luis, Argentina. Grupo de Investigación de Ecología del Desierto (Ecodes) Instituto Argentino de Investigación en Zonas Áridas (IADIZA), CCT-CONICET, Mendoza, Argentina.
Palabras clave: fenoles complejos, taninos, fenoles simples, fenilpropanoides, aves granívoras, chingolo, disuasión

Resumen

Ciertas semillas contienen compuestos aleloquímicos que pueden actuar como disuasivos en contra del ataque de granívoros. En general, las aves poseen la capacidad de reconocer tales compuestos y al evadir su consumo pueden evitar sus efectos adversos o tóxicos. La dieta del chingolo (Zonotrichia capensis) en el desierto del Monte de Argentina indica que es una especie con una gran amplitud trófica y que a menudo ingiere semillas que poseen compuestos secundarios fenólicos. El objetivo de este estudio fue evaluar la respuesta alimentaria de Z. capensis frente a diferentes tipos de compuestos fenólicos individuales que son comunes en las semillas. Realizamos experimentos de cafetería en el laboratorio y evaluamos dos clases diferentes de compuestos de semillas: fenoles complejos (de alto peso molecular, como el ácido tánico y el tanino condensado) y fenoles simples (de bajo peso molecular, como el ácido cafeico, el ácido ferúlico y el ácido cinámico). En los experimentos ofrecimos simultáneamente semillas comerciales de moha (Setaria italica) tratadas tópicamente con solución control y con una solución al 1% de cada compuesto arriba mencionado. Para aquellos compuestos en los cuales hubo disuasión, repetimos el experimento pero usamos semillas tratadas con una solución al 0.5% de dichos compuestos. El chingolo consumió menos de las semillas tratadas con dos concentraciones de ácido tánico, ácido cinámico y ácido cafeico que de las semillas control y el consumo de las semillas tratadas con tanino condensado y ácido ferúlico fue igual que el de las semillas control. La disuasión observada sugiere que el chingolo evita los compuestos fenólicos tanto simples como complejos.

Citas

AVERY, ML & DG DECKER. 1992. Repellency of cinnamic acid esters to captive Red-winged Blackbirds. Journal of Wildlife Management, 56:800-805.

BANKO, PC; ML CIPOLLINI; GW BRETON; E PAULK; M WINK; ET AL. 2001. Seed chemistry of Sophora Chrysophyla (Mamane) in relation to diet of specialist avian seed predator Loxioides bailleui (Palila) in Hawaii. Journal of Chemical Ecology, 28: 1393-1410.

BROWER, LP; WN RYERSON; LL COPPINCER & SC GLAZIER. 1968. Ecological chemistry and the palatability spectrum. Science, 161:1349-1351.

CASTELLANOS, I & FJ ESPINOSA-GARCÍA. 1997. Plant secondary metabolite diversity as a resistance trait against insects: a test with Sitophilus granarius (Coleoptera: Curculionidae) and seed secondary metabolites. Biochemical Systematic and Ecology, 25:591-602.

CLARK, L. 1998. Review of bird repellents. Proceedings of the Vertebrate Pest Conference, 18:330-337. CLARK, L. 1997a. A review of the bird repellent effects of carbocyclic compounds. Pp. 343-352 en: Mason, JR (ed.). Repellents in wildlife management. National Wildlife Research Center, Fort Collins, Colorado, USA.

CLARK, L. 1997b. Physiological, ecological, and evolutionary bases for the avoidance of chemical irritants by birds. Current Ornithology, 14:1-37.

CROCKER, DR & SM PERRY. 1990. Plant chemistry and bird repellents. Ibis, 132:300-308. CUETO, VR; J LOPEZ DE CASENAVE & L MARONE. 2008 Neotropical austral migrant landbirds: population trends and habitat use in the central Monte Desert, Argentina. The Condor, 110(1):70-79.

CUETO, VR; L MARONE & J LOPEZ DE CASENAVE. 2006. Seed preferences in sparrow species of the Monte desert: implications for seed-granivore interactions. Auk, 123:358-367.

DAVIS, AS; BJ SCHUTTE; J IANNUZZI & KA RENNER. 2008. Chemical and physical defence of weed seeds in relation to soil seedbank persistence. Weed Science, 56:676-684.

DEWICK, PM. 2002. Medicinal natural products: a biosynthetic approach. 2nd edition, John Wiley and Sons, Chichester, UK. 507 pp.

DÍAZ, M. 1996. Food choice by seed-eating birds in relation to seed chemistry. Comparative Biochemistry and Physiology, 113(A):239-246.

DRAGOIN, W; GE MCCLEARY & P MCCLEARY. 1971. A comparison of measuring conditioned taste aversions. Behavior Research Methods and Instrumentation, 3:309-303.

FINK, LS & LP BROWER. 1981. Birds can overcome the cardenolide defence of the monarch butterflies in Mexico. Nature, 291:67-70.

FLECK, DC & DF TOMBACK. 1996. Tannin and protein in the diet of a food-hoarding granivore, the Western Scrub Jay. The Condor, 98:474-482.

GUGLIELMO, CG; WH KARASOV & WJ JAKUBAS. 1996. Nutritional cost of a plant secondary metabolite explain selective foraging by ruffed grouse. Ecology, 77:1103-1115.

GONNET, JM. 2001. Influenze of cattle grazing on population density and species richness of granivorous birds (Emberizidae) in the arid plain of the Monte, Argentina. Journal of arid Enviroments, 48:569-579.

GREIG-SMITH, PW & FM WILSON. 1985. Influences of seed size, nutrient composition and phenolic content on the preferences of bullfinches feeding ash trees. Oikos, 44:47-54.

HAHLBROCK, K & D SCHEEL. 1989. Physiology and molecular biology of phenylpropanoids metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40:347-369.

HILE, AG. 2004. Avoidance of plant secondary compounds by European starlings: citronellyls. Crop Protection, 23:973-978.

HOLZINGER, F & M WINK. 1996. Mediation of cardiac glycoside insensitivity in the monarch butterfly (Danaus plexippus): role of an amino acid substitution in the ouabain binding site of Na+,K+_ATPase. Journal of Chemical Ecology, 22:1921-1937.

HARBORNE, JB. 1999. Recent advances in chemical ecology. Natural Products Reports, 16:509-523.

INFOSTAT. 2009. Versión profesional. Estadística y Biometría, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba.

JAKUBAS, WJ; PS SHAH; JR MASON & DM NORMAN. 1992. Avian repellency of coniferyl and cinnamyl derivatives. Ecological Applications, 2:147-156.

JAKUBAS, WJ & JR MASON. 1991. Role of avian trigeminal sensory system in detecting coniferyl benzoate, a plant allelochemical. Journal of Chemical Ecology, 17:2213-2221.

JANZEN, DH. 1971. Seed predation by animals. Annual Reviews in Ecological Systematic, 2:465- 492.

KARASOV, WH & C MARTÍNEZ DEL RÍO. 2007. Ecological Physiology: How Animals Process Energy, Nutrients, and Toxins. Princeton University Press, Princeton, NJ, USA.

KOENIG, WD. 1991. Effects of tannins and lipids on de digestibility of acorns by Acorn Word-Peckers. Auk, 108:79-88.

LÓPEZ DE CASENAVE, J. 2001. Estructura gremial y organización de un ensamble de aves del desierto del Monte. Tesis doctoral. Universidad de Buenos Aires, Argentina.

LYNN, DG & M CHANG. 1990. Phenolic signals in cohabitation: implication for plant development. Plant Physiology and Plant Molecular Biology, 41:497-526.

MANGIONE, AM & F BOZINOVIC. 2002. Ecología nutricional y estrategias de digestión: compromisos entre obtención de energía y eliminación de toxinas. Pp. 125-150 en: Bozinovic, F (ed.). Fisiología Ecológica y Evolutiva, Teoría y casos de estudio en animales. Ediciones Universidad Católica de Chile, Santiago.
MANGIONE, AM; DM DEARING & WH KARASOV.

2000. Interpopulation differences in tolerance to creosote bush resin in desert woodrats (Neotoma lepida). Ecology, 81:2067-2076.

MARONE, L; J LÓPEZ DE CASENAVE; FA MILESI & VR CUETO. 2008. Oikos, 117:611-619.

RÍOS, JM; AM MANGIONE & JC GIANELLO. 2008. Effects of natural phenolic compounds from a desert dominant shrub Larrea divaricata Cav. on toxicity and survival in mice. Revista Chilena de Historia Natural, 81:293-302.

ROBINSON, TV. 1983. The organic constituent of higher plants. Fourth edition. Cordus, North Amherst, Massachusetts, USA.

RODMAN, JE & FS CHEW. 1980. Phytochemical correlates of herbivory in a community of native and naturalized Cruciferae Biochemical Systematic and Ecology, 8:43-50.

SABAT, P; S GONZÁLEZ-MEJARES & K MALDONADO. 2009. Diet and habitat aridity affect osmoregulatory physiology: An intraspecific field study along environmental gradients in the Rufous-collared sparrow. Comparative Biochemistry and Physiology, 152:322-326.

SARRACINO, A; CM D’ALESSANDRO & M BORGHETTI. 2004. Seed colour and post-fire bird predation in a Mediterranean pine forest. Acta Oecologica, 26:191-196.

SCHAEFER, HM; V SCHMIDT & H WINKLER. 2003. Testing the defence tradeoff hypothesis: how contents of nutrients and secondary compounds affect fruit removal. Oikos, 102:318-328.

TORREGROSSA, AM & D DEARING. 2009. Nutritional toxicology of mammals: regulated intake of plant secondary compounds. Functional Ecology, 23:48-56.

VRIELING, K; W SMITH & E VAN DER MEIJDEN. 1991. Tritrophic interactions between aphids (Aphisja cobaea Schrank), ant species, Tyriajacobaea L., and Senecio jacobaea L. lead to maintenance of genetic variation in pyrrolizidine alkaloid concentration Oecologia, 86:177-182.

WANG, B & J CHEN. 2008. Tannin concentration enhances seed caching by scatterhoarding rodents: an experiment using artificial ‘seeds’. Acta Oecologica, 34:4379-4385.

WATKINS, RW; JA LUMLEY; EL GILLBISHOP; JD LANGTON; SD; MACNICOLL; ET AL. 1999. Quantitative structure-activity relationships (QSAR) of cinnamic acid bird repellents. Journal of Chemical Ecology, 25:2825-2845.

WATKINS, RW; HJ MOSSON, JE GURNEY, DP COWAN & JP EDWARDS. 1996. Cinnamic acid derivatives: Novel repellent seed dressings for the protection of wheat seed against damage by the field slug: Deroceras reticulatum. Crop Protection, 15:77-84.
Publicado
2010-08-01
Sección
Comunicaciones breves