El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana

Autores/as

  • Esteban G. Jobbágy Grupo de Estudios Ambientales, IMASL - Universidad Nacional de San Luis y CONICET, San Luis, Argentina.
  • Marcelo D. Nosetto Grupo de Estudios Ambientales, IMASL - Universidad Nacional de San Luis y CONICET, San Luis, Argentina.
  • Celina S. Santoni Grupo de Estudios Ambientales, IMASL - Universidad Nacional de San Luis y CONICET, San Luis, Argentina.
  • Germán Baldi Grupo de Estudios Ambientales, IMASL - Universidad Nacional de San Luis y CONICET, San Luis, Argentina.

Palabras clave:

bosque chaqueño, expansión agrícola, forestación, pastizal pampeano, regulación hidrológica, salinización, uso de la tierra

Resumen

En regiones sedimentarias como la llanura Chaco-Pampeana, caracterizadas por una muy escasa pendiente regional (<0.1%), las redes de evacuación de agua superficial y sales hacia el océano son pobres y los excesos hídricos se traducen, con frecuencia, en inundaciones y redistribución local de sales. Sobre la base de la experiencia local y global revisamos los riesgos, desafíos e incertidumbres que plantean dos transformaciones de la vegetación, el reemplazo de bosques secos por agricultura y la conversión de pastizales a plantaciones forestales, sobre la regulación hidrológica y la salinización de aguas y suelos de llanuras. La evidencia de bosques secos de Australia, África y Norteamérica, similares a los del Espinal y Chaco de Argentina, sugiere que su reemplazo masivo por cultivos de secano causa ascensos de napas y transporte de sales a la superficie. Estos bosques utilizan exhaustivamente la precipitación, reducen de forma drástica la recarga de la napa, son capaces de acumular, a lo largo de milenios, sales de origen atmosférico y derivadas de la meteorización en los suelos, y mantienen niveles freáticos profundos. El ingreso de la agricultura aumenta el drenaje profundo, seguido por ascensos graduales en el nivel freático y una fuerte movilización de sales disueltas, lo que afecta la fertilidad de los suelos cuando los niveles freáticos y las sales movilizadas alcanzan la superficie. En el Espinal argentino verificamos bajo bosques secos la nula recarga y el almacenamiento de sales en la zona no saturada de los suelos (0.25 a 7 kg Cl- /m2 de 0 a 6 m de profundidad), y el lavado de esas sales luego del uso agrícola. Este proceso podría explicar la inundación y salinización observadas en el Chaco y el Espinal. A diferencia de los ambientes de bosques secos, los niveles freáticos en los pastizales subhúmedos suelen estar cerca de la superficie, y las napas redistribuyen las sales hacia las zonas topográficamente bajas del paisaje. En estos pastizales, los cambios en el balance hídrico que acompañan al establecimiento de plantaciones forestales alteran la dinámica de las napas freáticas, debido al mayor consumo de estas plantaciones. Esto genera un intenso proceso de salinización de aguas y suelos. Este impacto negativo ocurre en climas subhúmedos, donde las forestaciones pueden revertir el flujo neto hacia las napas, en sedimentos de texturas medias a gruesas (capaces de mantener un buen abastecimiento de agua) hacia las masas forestales, y donde las especies forestales toleran en particular la salinización. En un relieve extremadamente plano como el de la llanura Chaco-Pampeana, los cambios en el uso de la tierra afectarían en forma intensa y difícil de anticipar el transporte vertical y horizontal de agua subterránea y sales. Esta vulnerabilidad hidrológica exige comprender y manejar los ciclos del agua y las sales desde una perspectiva eco- hidrológica y plantea el desafío de desarrollar una “agronomía del agua” capaz de contribuir a la regulación de los niveles freáticos a través del manejo de los ecosistemas naturales y cultivados.

Citas

ALLEN, RG; LS PEREIRA; D RAES & MD SMITH. 2004. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO.

BARROS, VR; ME DOYLE & IA CAMILLONI. 2008. Precipitation trends in southeastern South America: Relationship with ENSO phases and with low-level circulation. Theor. Appl. Climatol. DOI 10.1007/s00704-007-0329-x.

BOSCH, JM & JD HEWLETT. 1982. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal Hydrol. 55:3-23.

CALDER, IR; MJ HALL & KT PRASANNA. 1993. Hydrological impact of Eucalyptus plantation in India. Journal Hydrol 150:635-648.

CALDER, IR; PTW ROSIER; KT PRASANNA ET AL. 1997. Eucalyptus water use greater than rainfall input - a possible explanation from southern India. Hydrol. Earth Syst. Sci. 1:249-256.

CANADELL, J; RB JACKSON; JR EHLERINGER; HA MOONEY; OE SALA ET AL. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108:583-595.

COOK, PG; GR WALKER & ID JOLLY. 1989. Spatial variability of groundwater recharge in a semiarid region. Journal Hydrol. 111:195-212.

COUPLAND, RT. 1961. A reconsideration of grassland classification in the Northern Great Plains of North America. The Journal of Ecology 49(1):135-167.

DURIEUX, L; LAT MACHADO & H LAURENT. 2003. The impact of deforestation on cloud cover over the Amazon arc of deforestation. Rem. Sens. Environ. 86:132-140.

EDMUNDS, WM & CB GAYE. 1994. Estimating the spatial variability of groundwater recharge in the Sahel using chloride. Journal of Hydrology (Amsterdam) 156(1-4):47-59.

ENGEL, V; EG JOBBÁGY; M STIEGLITZ; M WILLIAMS & RB
JACKSON. 2005. The hydrological consequences of Eucalyptus afforestation in the Argentine Pampas. Wat. Resour. Res. 41:W10409, doi:10410.11029/12004WR003761.

FARLEY, KA; EG JOBBÁGY & RB JACKSON. 2005. Effects of afforestation on water yield: a global synthesis with implications for policy. Global Change Biology 11:1565-1576.

FUENTES GODÓ, P. 1987. El control de las inundaciones en el Dominio Chaqueño de Cabrera. Anexo 4. Pp. 119-125 en: Inundaciones y manejo de cuencas. Editorial CAIDA. Buenos Aires.

FUSCHINI MEJÍA, MC. 1994. El agua de las llanuras. UNESCO/ORCYT. Montevideo, Uruguay. 58 pp.

GEORGE, RJ; DJ MCFARLANE & RA NULSEN. 1997. Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeol. Journal 5:6-21.

GEORGE, RJ; RA NULSEN; R FERDOWSIAN & GP RAPER. 1999. Interactions between trees and groundwaters in recharge and discharge areas - A survey of Western Australian sites. Agricultural Water Management 39:91-113.

GRAU, HR; NI GASPARRI & TM AIDE. 2008. Balancing food production and nature conservation in the Neotropical dry forests of northern Argentina. Global Change Biology 14:985-997.

HATTON, TJ & RA NULSEN. 1999. Towards achieving functional ecosystem mimicry with respect to water cycling in southern Australian agriculture. Agroforestry Systems 45(1-3):203-214.

HEUPERMAN, A. 1999. Hydraulic gradient reversal by trees in shallow water table areas and repercussions for the sustainability of tree- growing systems. Agricultural Water Management 39:153-167.

HOFFMANN, WA & RB JACKSON. 2000. Vegetation- climate feedbacks in the conversion of tropical savanna to grassland. Journal of Climate 13:1593-1602.

JACKSON, RB. 1999. The importance of root distributions for hydrology, biogeochemistry and ecosystem functioning. Pp. 219-240 en: Tenhunen, JD & P Kabat (eds.). Integrating Hydrology, Ecosystem Dynamics and Biogeochemistry in Complex Landscapes. J. Wiley, Hoboken, NJ.

JOBBÁGY, EG & RB JACKSON. 2003. Patterns and mechanisms of soil acidification in the conversion of grasslands to forests. Biogeochemistry 64:205-229.

JOBBÁGY, EG & RB JACKSON. 2004. Groundwater use and salinization with grassland afforestation. Global Change Biology 10:1299-1312.

JOBBÁGY, EG & RB JACKSON. 2007. Groundwater and soil chemical changes under phreatophytic tree plantations. Journal of Geophysical Research
- Biogeosciences 112:G02013, doi: 02010.01029/02006JG000246.

KELLIHER, FM; R LEUNING & ED SCHULZE. 1993. Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia 95:153-163.

LAVADO, RS & MA TABOADA. 1988. Water, salt and sodium dynamics in a natraquoll in Argentina. CATENA 15:577-594.

LE MAITRE, DC; DF SCOTT & C COLVIN. 1999. A review of information on interactions between vegetation and groundwater. Water SA 25:137-152.

LEBLANC, MJ; G FAVREAU; S MASSUEL ; SO TWEED ; M LOIREAU ET AL. 2008. Land clearance and hydrological change in the Sahel: SW Niger. Global and Planetary Change 61(3-4):135-150.

LEDUC, C; G FAVREAU & P SCHROETER. 2001. Long- term rise in a Sahelian water-table: the Continental Terminal in South-West Niger. Journal Hydrol. 243:43-54.

MITLOEHNER, R & R KOEPP. 2007. Bioindicator capacity of trees towards dryland salinity. Trees 21:411-419.

MORRIS, JD & JJ COLLOPY. 1999. Water use and salt accumulation by Eucalyptus camaldulensis and Casuarina cunninghamiana on a site with shallow saline groundwater. Agricultural Water Management 39:205-227.

NEW, M; D LISTER; M HULME & I MAKIN. 2002. A high- resolution data set of surface climate over global land areas. Climate Research 21:1-25.

NITSCH, M. 1995. El desmonte en el chaco central del Paraguay: Influencia sobre el agua subterránea y la salinización de los suelos. 2do Simposio sobre aguas subterráneas y perforación de pozos en el Paraguay. San Lorenzo, Paraguay.

NITSCH, M; R HOFFMANN; J UTERMANN & L PORTILLO. 1998. Soil salinization in the central Chaco of Paraguay: A consequence of logging. Advances in Geoecology 3:495-502.

NLWRA. 2001. Australian dryland salinity assessment 2000: extent, impacts, processes, monitoring and management options. National Land and Water Resources Audit, The Natural Heritage Trust, Commonwealth of Australia.

NOSETTO, MD; EG JOBBÁGY & JM PARUELO. 2005. Land use change and water losses: The case of grassland afforestation across a soil textural gradient in Central Argentina. Global Change Biology 11:1101-1117.

NOSETTO, MD; EG JOBBÁGY; T TOTH & CM DI BELLA. 2007. The effects of tree establishment on water and salts dynamics in naturally salt-affected grasslands. Oecologia 152:695-705.

NOSETTO, MD; EG JOBBÁGY; T TOTH & RB JACKSON. 2008. Regional patterns and controls of ecosystem salinization with grassland afforestation along a rainfall gradient. Global Biogeochemical Cycles 22:GB2015, doi:10.1029/2007GB003000.

PARUELO, JM; JP GUERSCHMAN & SR VERÓN. 2005. Expansión agrícola y cambios en el uso del suelo. Ciencia Hoy 15(87):14-23.

PIOVANO, EL; D ARIZTEGUI; SM BERNASCONI & JA MCKENZIE. 2004. Stable isotopic record of hydrological changes in subtropical Laguna Mar Chiquita (Argentina) over the last 230 years. The Holocene 14(4):525-535.

RIDLEY, AM; B CHRISTY; FX DUNIN; PJ HAINES; KF WILSON ET AL. 2001. Lucerne in crop rotations on the Riverine Plains 1. The soil water balance. Australian Journal of Agricultural Research 52(2):263-277.

RIDOLFI, L; P D’ODORICO & F LAIO. 2006. Effect of vegetation-water table feedbacks on the stability and resilience of plant ecosystems. Wat. Resour. Res. 42:W01201, doi:10.1029/2005WR004444.

SANTONI, CS; EG JOBBÁGY; V MARCHESINI & S CONTRERAS. 2008. Diferentes usos del suelo: consecuencias sobre balance hídrico y drenaje profundo en zonas semiáridas. Congreso Argentino de la Ciencia del Suelo 2008. ISBN No 978-987-21419-9-8.

SAPANOV, MK. 2000. Water uptake by trees on different soils in the Northern Caspian region. Eurasian Soil Science 33:1157-1165.

SCANLON, BR; KE KEESE; AL FLINT; LE FLINT, CB GAYE ET AL. 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol. Process. 20:3335-3370.

SCANLON, BR; RC REEDY; DA STONESTROM; DE PRUDIC & KF DENNEHY. 2005. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology 11:1577-1593.

SCHENK, HJ & RB JACKSON. 2002. The global biogeography of roots. Ecological Monographs 72:311-328.

SCHOFIELD, R; DSG THOMAS & MJ KIRBY. 2001. Causal processes of soil salinization in Tunisia, Spain and Hungary. Land Degradation & Development 12:163-181.

SCOTT, DF & W LESCH. 1997. Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchments, South Africa. Journal Hydrol 199:360-377.

SRH. 2004. Estadística Hidrológica de la República Argentina. Subsecretaría de Recursos Hídricos. TOTH, J. 1999. Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeol. Journal 7(1):1-14.

TOTH, T & K RAJKAI. 1994. Soil and plant correlations in a solonetzic grassland. Soil Science 157:253-262.

TRIPALDI, A & SL FORMAN. 2007. Geomorphology and chronology of Late Quaternary dune fields of western Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 251:300-320.

TYLER, SW; JB CHAPMAN; SH CONRAD; DP HAMMERMEISTER; DO BLOUT ET AL. 1996. Soil water flux in the southern Great Basin, United States: Temporal and spatial variations over the last 120000 years. Wat. Resour. Res. 32(6):1481-1500.

USGS. 2004. SRTM Elevation Data. University of Maryland. U.S. Geological Survey.

VARNI, MR & EJ USUNOFF. 1999. Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina. Hydrogeol. Journal 7:180-187.

VERTESSY, R; L CONNELL; J MORRIS; R SILBERSTEIN; A HEUPERMAN ET AL. 2000. Sustainable hardwood production in shallow watertable areas. RIRDC publication 00-163, Rural Industries Research and Develpment Corporation, Barton.

VIGLIZZO, EF; ZE ROBERTO; F LÉRTORA; E LÓPEZ GAY & J BERNARDOS. 1997. Climate and land-use change in field-crop ecosystems of Argentina. Agriculture, Ecosystems and Environment 66:61-70.

WILCOX, BP; MS SEYFRIED & DD BRESHEARS. 2003. The water balance on rangelands. Pp. 791-794 en: Stewart, BA & TA Howell (Eds.). Encyclopedia of Water Science. Marcel Dekker, New York.

ZAK, MR; M CABIDO; JG HODGSON. 2004. Do subtropical seasonal forests in the Gran Chaco, Argentina, have a future? Biological Conservation 120:589-598.

ZHANG, L; WR DAWES & GR WALKER. 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Wat. Resour. Res. 37:701-708.

Descargas

Publicado

2008-12-01

Cómo citar

Jobbágy, E. G., Nosetto, M. D., Santoni, C. S., & Baldi, G. (2008). El desafío ecohidrológico de las transiciones entre sistemas leñosos y herbáceos en la llanura Chaco-Pampeana. Ecología Austral, 18(3), 305–322. Recuperado a partir de https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1377

Número

Sección

Sección Especial