Supervivencia y crecimiento de plántulas de especies leñosas del Chaco Árido sometidas a remoción de la biomasa aérea

  • Alicia H. Barchuk Ecología Agrícola, Fac. de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
  • Elena B. Campos Ecología Agrícola, Fac. de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
  • Carolina Oviedo Ecología Agrícola, Fac. de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
  • María Del Pilar Díaz Estadística y Bioestadística, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Argentina
Palabras clave: regeneración, rebrote, banco de plántulas, esclerófilas, decíduas, Fabaceae, no- Fabaceae, simulación de herbivoría

Resumen

La capacidad de rebrote es una característica común en especies leñosas que forman banco de plántulas que asegura la supervivencia ante la pérdida eventual de la biomasa aérea. Analizamos el efecto de la remoción total de la biomasa aérea sobre la supervivencia y el crecimiento de las plántulas de 14 especies leñosas del Chaco Árido con el objetivo de evaluar su aptitud para formar banco de plántulas. Las especies seleccionadas difieren en su persistencia foliar (caducifolias y perennifolias) y filiación filogenética (leguminosas y no leguminosas). Semillas de las 14 especies fueron sembradas en invernadero y a las 12 semanas se practicó la remoción de la parte aérea en un subgrupo de las plántulas emergidas. Se midieron la tasa de emergencia, la supervivencia pos-remoción, así como otras variables relacionadas con el crecimiento: biomasa total, biomasa de raíz y tallo, área foliar, longitud de raíz y altura de tallo. La tasa de emergencia fue superior en las plántulas de especies caducifolias, especialmente en las leguminosas. Dentro de cada tratamiento (testigo y remoción) se identificaron grupos de especies teniendo en cuenta la capacidad de crecimiento (en el caso del testigo) y de rebrote (en el caso del tratamiento remoción). El efecto de la persistencia foliar sobre la tasa de crecimiento fue significativamente superior en las especies leguminosas. La remoción de la parte aérea afectó negativamente las probabilidades de supervivencia de todas las especies, aunque en grado variable. El 50% de las especies presentó capacidad de rebrote, pero dentro de éstas no todas las plántulas lograron rebrotar. La capacidad de rebrote aparece tanto en arbustos caducifolios (especialmente leguminosas) como en perennifolios esclerófilos. Sin embargo, ambos grupos responden de forma diferente en cuanto al crecimiento y relación raíz/tallo. Las diferencias debidas a efectos de familia (Fabaceae y no Fabaceae) y la persistencia foliar (caducifolia y perennifolia) se hicieron más notorias, bajo los tratamientos de remoción. Los datos indicarían que la remoción de la parte aérea estimula la longitud de la raíz en la mayoría de las especies que rebrotan, de forma que la energía que la planta dedica a producir raíz es a costa de un menor crecimiento aéreo y permitiría la supervivencia en ambientes con estrés o perturbaciones.

Citas

AERTS, R. 1995. The advantages of being evergreen. Tree 10:402-407.

ANTÚNEZ, I; EC RETAMOSA & R VILLAR. 2001.Relative growth rate in phylogenetically related deciduous and evergreen woody species. Oecologia 128:172-180.

BARCHUK, AH & MP DÍAZ. 1999. Regeneration and structure of Aspidosperma quebracho-blanco Schl. in the Arid Chaco (Córdoba, Argentina). Forest Ecol. Manag. 118: 31-36.

BELL, TL & F OJEDA. 1999. Underground starch storage in Erica species of the Cape Floristic Region - differences between seeders and resprouters. New Phytol. 144:143-152.

BELL, TL & JS PATE. 1996. Growth and fire response of selected Epacridaceae of south-western Australia. Aust. J. Bot. 44:509-526.

BOND, W J & JJ MIDGLEY. 2001. Ecology of sprouting in woody plants: the persistence niche. Trends Ecol. Evol. 16:45-51.

BOO, RM ; DV PELAEZ; SC BUNTING; MD MAYOR & OR ELIA. 1997. Effect of fire on woody species in central semi-arid Argentina. J. Arid Env. 35:87-94.

BRAUN, WRH & SA LAMBERTO. 1974. Modificaciones producidas por incendios en la integración de los componentes leñosos de un monte natural. Revista de Investigaciones Agropecuarias, Serie Biología y Producción Vegetal 11:11-23.

CABIDO, M; C GONZÁLEZ; A ACOSTA & S DÍAZ. 1993. Vegetation changes along a precipitation gradient in Central Argentina. Vegetatio 109:5-14.

CABIDO, M; A MANSSUR; ML CARRANZA & C GONZALEZ-ALBARRACÍN. 1994. The vegetation and physical environment of the Arid Chaco in the province of Cordoba, Central Argentina. Phytocoenologia 24:423-460.

CABRERA, AL. 1976. Regiones Fitogeográficas de Argentina. Enciclopedia Argentina de Agricultura y Jardinería. Tomo II. Fascículo I. Editorial ACME S.A.C.I.

CANADELL, J & PH ZEDLER. 1995. Underground structures of woody plants in Mediterranean ecosystems of Australia, California, and Chile. Pp. 177-210 in: MKT Arroyo; PH Zedler & MA Fox (eds.). Ecology and biogeography of Mediterranean ecosystems in Chile, California and Australia. Springer-Verlag. New York.

CHAPIN, FS; K AUTUMN & F PUGNAIRE. 1993. Evolution of suites of traits in response to enviromental stress. Am. Nat.142:S78-S92.

CHAPIN, FS; ED SCHULZE & HA MOONEY. 1990. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 21:423-447.

CHABOT, BF & DJ HICKS. 1982. The ecology of leaf life spans. Annu. Rev. Ecol. Syst. 13:229-59.

DÍAZ, MP & CG DEMÉTRIO. 1998. Introducción a los Modelos Lineales Generalizados. Su Aplicación a las Ciencias Biológicas. Screen Ed. Córdoba.

EAMUS, D. 1999. Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Tree 14:11-16.

EHLERINGER, JR & J COMSTOCK. 1987. Leaf absorptance and leaf angle: mechanisms for stress avoidance. Pp. 55-76 in: JD Tenhunen; FM Catarino; OL Lange & WC Oechel (eds). Plan Response to Stress - Functional Analysis in mediterranean Ecosystems. NATO Advanced Science Institute Series. Springer, Berlin Heidelberg. New York.

ESPELTA, JM; M RIBA & J RETANA. 1995. Patterns of seedling recruitment in west-Mediterranean Quercus ilex forests influenced by canopy development. Journal of Vegetation Science 6:465-472.

FREDERICKSEN, TS; MJ JUSTINIANO; B MOSTACEDO; D KENNARD & L MCDONALD. 2000. Comparative regeneration ecology of three leguminous timber species in a Bolivian tropical dry forest. New Forests 20:45-64.

GARCÍA-FAYOS, P & M VERDÚ. 1998. Soil seed bank, factors controlling germination and establishment of a Mediterranean shrub: Pistacia lentiscus L. Acta Oecologica 19:357-366.

GRIME, JP. 1979. Plant strategies and vegetation processes. Wiley.

HUNZIKER, AT. 1946. Raíces gemíferas en algunas plantas leñosas argentinas. Revista Argentina de Agronomía 13:47-54.

JAMES, S. 1984. Lignotubers and burls. Their structure, function and ecological significance in Mediterranean ecosystems. Bot. Rev. 50:225-266.

JOHNSON, RA & DW WICHERN. 1992. Applied Multivariate Statistical Analysis. Prentice Hall. New York.

KAMMESHEIDT, L. 1999. Forest recovery by root suckers and above-ground sprouts after slash-and-burn agriculture, fire and logging in Paraguay and Venezuela. J. Trop. Ecol.15:143-157.

KEELEY, J. 1992. Recruitment of seedling and vegetative sprouts in unburned chaparral. Ecology 73: 194-1208.

KEELEY, JE & PH ZEDLER. 1978. Reproduction of chaparral shrubs after fire: a comparison of the sprouting and seed strategies. Am. Midl. Nat. 97:120-132.

KIKUZAWA, K.1991. A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am. Nat. 138:1250-1263.

KITAJIMA K & M FENNER 2000. Ecology of seedling regeneration. Pp. 331-359 in: M Fenner (ed.). Seeds: the ecology of regeneration in plant communities. CAB International.

LARCHER, W. 2003. Physiological Plant ecology. Springer-Verlag. Berlin, Alemania.

LEISHMAN, MR; IJ WRIGH; AT MOLES & M WESTOBY. 2000. The evolutionary ecology of seed size. Pp. 31-57 in M. Fenner (ed.). Seeds: The Ecology of Regeneration in Plant Communities (ed M. Fenner). CAB International. Wallingford.

LIANG, K & S ZEGER. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73:13-22.

LLORET, F; C CASANOVAS & J PEÑUELAS. 1999. Seedling survival of Mediterranean shrubland species in relation to root:shoot ratio, seed size and water and nitrogen use. Funct. Ecol. 13:210-216.

MACQUEEN, JB. 1967. Some Methods for Classification and Analysis of Multivariate Observations. Proceeding of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press. Berkeley, USA.

MAUN, AM. 1994. Adaptations enhancing survival and establishment of seedlings on coastal dune systems. Plant Ecol. 111:59-70.

MARONE L; BE ROSSI & ME HORNO. 1998. Timing and spatial pattern of seed dispersal and redistribution in a South American warm desert. Plant Ecol. 137:143-150.

MARTÍNEZ-CARRETERO E & A DALMASSO. 2002. Response to cutting of Larrea divaricata and L. cuneifolia in Argentina. Appl. Veget. Sci. 5:127-133.

MCCULLAGH, P & JA NELDER. 1989. Generalized Linear Models. Chapman & Hall. London.

MOGLIA, M & G JOFRE. 1998. Response to clearing of woody plants in a forest of quebracho blanco (Aspidosperma quebracho-blanco) and algarrobo (Prosopis flexuosa) in the Province of San Luis (Argentina). Phyton 63:257-265.

MOLES, AT & M WESTOBY. 2004. Seedling survival and seed size: a synthesis of the literature. J. Ecol. 92:372-383.

MONTENEGRO, G; G AVILA & P SCHATTE. 1983. Presence and development of lignotubers in shrubs of the Chilean matorral. Canad. J. Bot. 57:1206-1213.

MORELLO, J; J PROTOMASTRO; L SANCHOLUZ & C BLANCO. 1977. Estudio Macroecológico de los Llanos de La Rioja. Idia 34:242-248

REICH PB; MB WALTERS & DS ELLSWORTH. 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecolog. Monog. 62:365-392.

REICH, PB, MB WALTERS & DS ELLSWORTH. 1997. From tropics to tundra: Global convergence in plant functioning. Proceed. Nat. Acad. Scien. 94:13730-13734.

RIBA, M. 1998. Effects of intensity and frequency of crown damage on resprouting of Erica arborea L. (Ericaceae): Acta Oecolog. 19:9-16.

RUNDEL, PW. 1991. Adaptive significance of some morphological and physiological characteristics in Mediterranean plants: facts and fallacies. Pp. 119-139 in: J Roy; J Aronson & F Di Castri (eds.) Time Scales of Biological Responses to Water Constraints. SPB Academic Publishing. Amsterdam, The Netherlands.

SCHENK, JH. 1999. Clonal splitting in desert shrubs. Plant Ecology 141:41-52.

SILVERTOWN, J; M FRANCO; I PISANTY & A MENDOZA. 1993. Comparative plant demography. Relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology 81:465-476.

STOKES, M; C DAVIS & G KOCH. 1995. Categorical data Analysis Using the SAS System. SAS Institute Inc.

TURNER, IM. 1994. Sclerophylly: primarily protective? Funct. Ecolog. 8:669-675.

VASEK, FC. 1980. Creosote bush: long-lived clones in the Mojave Desert. Am. J. Bot. 67:246-255.

WELLS, P. 1968. The relation between mode of reproduction and extent of speciation in woody genera of the California Chaparral. Evolution 23:264-267.

WESTOBY, M; FALSTER DS; MOLES AT; VESK PA & WRIGHT IJ. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33:125-159.

WILLIAMSON, J. 1934. Las raíces del chañar (Gourliea decorticans). Revista Argentina de Agronomía 1:304.

WRIGHT, IJ; PB REICH; M WESTOBY; DD ACKERLY; Z. BARUCH ET AL. 2004. The world-wide leaf economics spectrum. Nature 428:821-827.

ZITZER, SF; SR ARCHER & TW BOUTTON. 1996. Spatial variability in the potential for symbiotic N2 fixation by woody plants in a subtropical savanna ecosystem. J Appl. Ecol. 33:1125-1136.
Publicado
2006-06-01
Sección
Artículos