Densidad energética de los organismos Patagónicos de agua dulce

  • Javier Ciancio Centro Nacional Patagónico (CENPAT, CONICET), Puerto Madryn, Chubut, Argentina
  • Miguel Pascual Centro Nacional Patagónico (CENPAT, CONICET), Puerto Madryn, Chubut, Argentina
Palabras clave: calorímetro de bomba, modelo bioenergético

Resumen

La densidad energética de los organismos puede ser utilizada con distintos fines como evaluar la calidad de la dieta, comparar la importancia de distintas presas para un predador, corregir las tasas de evacuación gástrica de modelos, explicar el comportamiento de forrajeo de ciertos predadores o determinar su estado fisiológico. Consiste en un parámetro fundamental para el modelado bioenergético de ecosistemas. En este trabajo estimamos la densidad energética de los principales grupos de los ecosistemas de agua dulce de la Patagonia, incluyendo peces, crustáceos, gasterópodos, oligoquetos e insectos. Encontramos que los peces (5048-5789 Cal/g) es el grupo energéticamente más denso seguido de los insectos (5062-5232), crustáceos (3364-3994), oligoquetos (3471) y finalmente los gasterópodos (1143).

Citas

BAEZ, V; E DORSCH; M BATTINI & R PAPA. 1988. Consideraciones sobre la composición química de Percichthys spp. y Patagonina hatcheri. Segunda Reunión Argentina de Acuicultura. Puerto Madryn, Chubut.

BENOIT-BIRD, KJ. 2004. Prey caloric value and predator energy needs: foraging predictions for wild spinner dolphins. Mar. Biol. 145:435–444.

BRANDT, SB. 1993. The effect of thermal front on fish growth: a bioenergetics evaluation of food and temperature. Estuaries 16:142-159.

BURNS, JW. 1972. The distribution and life history of South American Freshwater crabs (Aegla) and their role in trout stream and lakes. Trans. Am. Fish. Soc. 4:595-607.

CRAIG, JF; MJ KENLEY & JF TALLING. 1978. Comparative estimation of the energy content of fish tissue from bomb calorimetry, wet oxidation and proximate analysis. Fresw. Biol. 8:585-590.

DORSCHT, E. 1988. Valoración química de los alimentos naturales consumidos habitualmente por Salmo gairdneri. Segunda Reunión Argentina de Acuicultura. Puerto Madryn, Chubut.

FERRIZ, RA. 1993. Some Aspects of four fish species diet from Limay River (Argentina). Revista de Ictiología. 2/3:1-7.

HARRIS, M & JRG HISLOP. 1978. The food of young Puffins Fratercula artica. J. Zool. Lond. 185:213-236.

HARTMAN, KJ & FJ MARGRAFF. 1993. Evidence of predatory control of yellow perch (Perca Flavescens) recruitment in Lake Erie, U.S.A. J. Fish Biol. 42:109-119.

HARVEY, CJ; PC HANSON; TE ESSINGTON; PB BROWN & JF KITCHELL. 2002. Using bioenergetics models to predict stable isotope ratios in fishes Can. J. Fish. Aquat. Sci. 59:115–124.

HAYES, JW; JD STARK & KA SHEARER. 2000 Development and test of a whole-lifetime foraging and bioenergetics growth model for drift-feeding Brown trout. Trans. Am. Fish. Soc. 129: 315-332.

HIGGS, DA; JS MACDONALD; CD LEVINGS & BS DOSANJH. 1995. Nutrition and feeding habits in relation to life history stage. Pp. 159-315 in: C Groot; L Margolis & WC Clarke (eds.). Physiological Ecology of Pacific Salmon. Univ. British Columbia Press. Vancouver.

HILL, DK & JJ MAGNUSON. 1990. Potential Effects of Global Climate Warming on the Growth and Prey Consumption of Great Lakes Fish. Trans. Am. Fish. Soc.119:265–275

KOEN-ALONSO, M & P YODZIS. 2005. Multispecies modeling of some components of the marine community of northern and central Patagonia, Argentina . Can. J. Fish. Aquat. Sci. 62 (7):1490- 1512.

MACCHI, PJ; VE CUSSAC; MF ALONSO & MA DENEGRI. 1999. Predation relationships between introduced salmonids and the native fish fauna in lakes and reservoirs in northern Patagonia. Ecol. Freshwat. Fish. 8:227-236.

PASCUAL, MA; P MACCHI; J URBANSKY; F MARCOS; C RIVA ROSSI ET AL. 2002. Evaluating potential effects of exotic freshwater fish from incomplete species presence-absence data. Biol. Invasions. 4:101-113.

PEDERSEN, J & JRG HISLOP. 2001. Seasonal variations in the energy density of fishes in the North Sea. J. Fish Biol. 59:380–389.

PROBST, WE; CF RABENI; WG COVINGTON & RE MARTENEY. 1984. Resource use by stream-dwelling Rock Bass and smallmouth Bass. Trans. Am. Fish. Soc. 113:283-294.

RUZYCKI, JR; DA BEAUCHAMP & DL YULE. 2003. Effects of introduced lake trout on native cutthroat trout in Yellowstone Lake. Ecol. Appl.13:23-37.

SHUTER, BJ & JD MEISNER. 1992. Tools for assessing the impact of climate change on freshwater fish populations. Geojournal 28:7-20

TRUDEL, M & JB RASMUSSEN. 2001. Predicting mercury concentration in fish using a mass balance model. Ecol. Appl. 11:517–529.

TRUDEL, M; DR GEIST & DW WELCH. 2004. Modeling the Oxygen Consumption Rates in Pacific Salmon and Steelhead: An Assessment of Current Models and Practices. Trans. Am. Fish. Soc. 133:326–348.

WANLESS, S; MP HARRIS; P REDMAN & JR SPEAKMAN. 2005. Low energy values of fish as a probable cause of a major seabird breeding failure in the North Sea. Mar. Ecol. Prog. Ser. 294:1–8.
Publicado
2006-06-01
Sección
Comunicaciones breves