Distribución espacial y controles ambientales de las represas (tajamares) en el Chaco Árido

Autores/as

  • Marcos J. Niborski Grupo de Estudios Ambientales-IMASL, Universidad Nacional de San Luis (UNSL) y CONICET. San Luis, Argentina. Cátedra de Manejo y Conservación de Suelos, Facultad de Agronomía, Universidad de Buenos Aires (UBA). CABA, Argentina
  • Francisco Murray INTA, AER San Luis. San Luis, Argentina
  • Esteban G. Jobbágy Grupo de Estudios Ambientales-IMASL, Universidad Nacional de San Luis (UNSL) y CONICET. San Luis, Argentina
  • Marcelo D. Nosetto Grupo de Estudios Ambientales-IMASL, Universidad Nacional de San Luis (UNSL) y CONICET. San Luis, Argentina. Cátedra de Climatología, Facultad de Ciencias Agropecuarias, Universidad Nacional de Entre Ríos (UNER). Entre Ríos, Argentina
  • Pedro D. Fernández Instituto de Ecología Regional, CONICET y Universidad Nacional de Tucumán. Tucumán, Argentina. Departamento de Biogeoquímica, Instituto de Investigación Animal del Chaco Semiárido, INTA. Tucumán, Argentina
  • George Castellanos Grupo de Estudios Ambientales-IMASL, Universidad Nacional de San Luis (UNSL) y CONICET. San Luis, Argentina
  • Patricio N. Magliano Grupo de Estudios Ambientales-IMASL, Universidad Nacional de San Luis (UNSL) y CONICET. San Luis, Argentina. Departamento de Biología, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis (UNSL). San Luis, Argentina

DOI:

https://doi.org/10.25260/EA.22.32.1.0.1797

Palabras clave:

tajamar, ecohidrología, escurrimiento superficial, semiárido, bosque seco, bebida animal

Resumen

Las regiones áridas tienen déficit hídrico a lo largo de todo el año, lo cual limita el crecimiento de la vegetación y la provisión de agua para bebida animal. El Chaco Árido (~10 Mha) sostiene una producción ganadera extensiva de baja inversión, basada en cosechar agua de lluvia en represas (tajamares) como principal fuente de abastecimiento de agua. En este trabajo se determinó la distribución espacial de las represas y su relación con el entorno biofísico (precipitación, vegetación, caminos) en el Chaco Árido. Para ello analizamos imágenes satelitales, información vectorial y análisis multivariados sobre una grilla de 135 celdas de 0.25°x0.25° cada una. En total identificamos 7920 represas (1 cada 1230 ha) y observamos densidades máximas de 1 represa cada 185 ha, pero también celdas sin represas, asociadas a la presencia de sierras, salinas y dunas. La densidad de represas fue mayor en celdas con mayor densidad de establecimientos ganaderos, caminos y carga animal (r=0.63, r=0.56 y r=0.51, respectivamente; P<0.01 en todos los casos), y en sitios con mayor precipitación media anual y menor variabilidad interanual (r=0.62 y r=-0.47, respectivamente; P<0.01 para ambos casos). Aunque la precipitación media anual fue el atributo que mejor se asoció a la distribución de las represas a escala regional, dicha relación fue más variable hacia los extremos del gradiente (árido y subhúmedo). Esto puede deberse a factores antrópicos tales como la baja rentabilidad de los sistemas ganaderos y la historia o el cambio en el uso del suelo. Los resultados de este trabajo representan un primer intento para dimensionar la importancia que tienen las represas en el Chaco Árido. Consideramos que este estudio puede ser útil para entender la producción ganadera y también para futuras investigaciones relacionadas con la conservación de la vida silvestre y el desarrollo de poblados rurales en la región.

Citas

Aguilera, M. O., D. F. Steinaker, and M. R. Demaria. 2003. Runoff and soil loss in undisturbed and roller-seeded shrublands of semiarid Argentina. Journal of Range Management 56:227-233. https://doi.org/10.2307/4003811.

Anriquez, A., A. Albanesi, C. Kunst, R. Ledesma, C. López, A. Rodríguez Torresi, and J. Godoy. 2005. Rolado de fachinales y calidad de suelos en el Chaco occidental, Argentina. Ciencia del Suelo 23:145-157.

Asner, G. P., A. J. Elmore, L. P. Olander, R. E. Martin, and A. T. Harris. 2004. Grazing systems, ecosystem responses, and global change. Annu Rev Environ Resour 29:261-299. https://doi.org/10.1146/annurev.energy.29.062403.102142.

Baldi, G., S. R. Verón, and E. G. Jobbágy. 2013. The imprint of humans on landscape patterns and vegetation functioning in the dry subtropics. Global Change Biology 19:441-458. https://doi.org/10.1111/gcb.12060.

Basán Nickisch, M. 2010. Manejo de recursos hídricos para áreas de secano. Instituto Nacional de Tecnología Agropecuaria.

Basán Nickisch, M. 2013. Experiencias de captación de agua de lluvia para la recarga artificial de acuíferos someros en el chaco argentino. En Aprovechamiento sustentable de los recursos hídricos para el sistema agropecuario en condiciones semiáridas.

Basant, S., B. P. Wilcox, P. M. Leite, and C. L. Morgan. 2020. When savannas recover from overgrazing, ecohydrological connectivity collapses. Environmental Research Letters 15:054001. https://doi.org/10.1088/1748-9326/ab71a1.

Bergkamp, G. 1998. A hierarchical view of the interactions of runoff and infiltration with vegetation and microtopography in semiarid shrublands. Catena 33:201-220. https://doi.org/10.1016/S0341-8162(98)00092-7.

Bestelmeyer, B. T., G. S. Okin, M. C. Duniway, S. R. Archer, N. F. Sayre, J. C. Williamson, and J. E. Herrick. 2015. Desertification, land use, and the transformation of global drylands. Frontiers in Ecology and the Environment 13:28-36. https://doi.org/10.1890/140162.

Biazin, B., G. Sterk, M. Temesgen, A. Abdulkedir, and L. Stroosnijder. 2012. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa–a review. Physics and Chemistry of the Earth, Parts A/B/C 47:139-151. https://doi.org/10.1016/j.pce.2011.08.015

Blanco, L., M. Aguilera, J. Paruelo, and F. Biurrun. 2008. Grazing effect on NDVI across an aridity gradient in Argentina. Journal of Arid Environments 72:764-776. https://doi.org/10.1016/j.jaridenv.2007.10.003.

Blanco, L. J., C. A. Ferrando, and F. N. Biurrun. 2009. Remote sensing of spatial and temporal vegetation patterns in two grazing systems. Rangeland Ecology and Management 62:445-451. https://doi.org/10.2111/08-213.1.

Blanco, L. J., C. A. Ferrando, F. N. Biurrun, E. L. Orionte, P. Namur, D. J. Recalde, and G. D. Berone. 2005. Vegetation responses to roller chopping and buffelgrass seeding in Argentina. Rangeland Ecology and Management 58:219-224. https://doi.org/10.2111/1551-5028(2005)58[219:VRTRCA]2.0.CO;2.

Bogino, S., and M. Bravo. 2014. Impacto del rolado sobre la biodiversidad de especies leñosas y la biomasa individual de jarilla (Larrea divaricata) en el Chaco Árido Argentino. Quebracho-Revista de Ciencias Forestales 22.

Chillo, V., R. A. Ojeda, M. Anand, and J. F. Reynolds. 2015. A novel approach to assess livestock management effects on biodiversity of drylands. Ecological Indicators 50:69-78. https://doi.org/10.1016/j.ecolind.2014.10.009.

Coirini, R. O., M. S. Karlin, and G. J. Reati. 2010. Manejo sustentable del ecosistema Salinas Grandes, Chaco árido. Marcos Sebastián Karlin.

Contreras, S., C. S. Santoni, and E. G. Jobbágy. 2013. Abrupt watercourse formation in a semiarid sedimentary landscape of central Argentina: The roles of forest clearing, rainfall variability and seismic activity. Ecohydrology 6:794-805. https://doi.org/10.1002/eco.1302.

D’Odorico, P., A. Bhattachan, K. F. Davis, S. Ravi, and C. W. Runyan. 2013. Global desertification: drivers and feedbacks. Advances in Water Resources 51:326-344. https://doi.org/10.1016/j.advwatres.2012.01.013.

Denison, J. A., and L. Wotshela. 2012. An overview of indigenous, indigenised and contemporary water harvesting and conservation practices in south Africa. Irrigation and Drainage 61:7-23. https://doi.org/10.1002/ird.1689.

Descroix, L., G. Mahé, T. Lebel, G. Favreau, S. Galle, E. Gautier, J. Olivry, J. Albergel, O. Amogu, and B. Cappelaere. 2009. Spatio-temporal variability of hydrological regimes around the boundaries between Sahelian and Sudanian areas of West Africa: A synthesis. Journal of Hydrology 375:90-102. https://doi.org/10.1016/j.jhydrol.2008.12.012.

Erb, K.-H., T. Fetzel, T. Kastner, C. Kroisleitner, C. Lauk, A. Mayer, and M. Niedertscheider. 2016. Livestock grazing, the neglected land use. Pp. 295-313 en Social Ecology. Springer. https://doi.org/10.1007/978-3-319-33326-7_13.

Evenari, M., L. Shanan, and N. Tadmor. 1971. The Negev. The challenge of a desert. Second edition. Harvard University Press.

Feng, S., and Q. Fu. 2013. Expansion of global drylands under a warming climate. Atmos Chem Phys 13:081-010. https://doi.org/10.5194/acp-13-10081-2013.

Fernández Duque, J. 1988. Tajamares y pozones: una solución siempre vigente. INTA Trelew, Argentina.

Fernández, P., M. Baumann, G. Baldi, N. R. Banegas, S. Bravo, N. I. Gasparri, M. Lucherini, M. S. Marinaro Fuentes, A. S. Nanni, and J. A. Nasca. 2019. Grasslands and Open Savannas of the Dry Chaco. https://doi.org/10.1016/B978-0-12-409548-9.12094-9.

Fernández, P. D., T. Kuemmerle, M. Baumann, H. R. Grau, J. A. Nasca, A. Radrizzani, and N. I. Gasparri. 2020. Understanding the distribution of cattle production systems in the South American Chaco. Journal of Land Use Science 15:52-68. https://doi.org/10.1080/1747423X.2020.1720843.

García, A. G., C. M. Di Bella, J. Houspanossian, P. N. Magliano, E. G. Jobbágy, G. Posse, R. J. Fernández, and M. D. Nosetto. 2017. Patterns and controls of carbon dioxide and water vapor fluxes in a dry forest of central Argentina. Agricultural and Forest Meteorology 247:520-532. https://doi.org/10.1016/j.agrformet.2017.08.015.

Giménez, R., J. L. Mercau, F. E. Bert, S. Kuppel, G. Baldi, J. Houspanossian, P. N. Magliano, and E. G. Jobbágy. 2020. Hydrological and productive impacts of recent land‐use and land‐cover changes in the semiarid Chaco: Understanding novel water excess in water scarce farmlands. Ecohydrology 13:e2243. https://doi.org/10.1002/eco.2243.

Godfray, H. C. J., J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. Robinson, S. M. Thomas, and C. Toulmin. 2010. Food security: the challenge of feeding 9 billion people. Science 327:812-818. https://doi.org/10.1126/science.1185383.

Graetz, R., and J. Ludwig. 1976. A method for the analysis of piosphere data applicable to range assessment. The Rangeland Journal 1:126-136. https://doi.org/10.1071/RJ9780126.

Greslebin, H. 1931. Las represas de la región occidental de la travesía puntana (provincia de San Luis). Sección Geografía Humana de la Primera Reunión Nacional de Geografía.

Heshmatti, G., J. Facelli, and J. Conran. 2002. The piosphere revisited: plant species patterns close to waterpoints in small, fenced paddocks in chenopod shrublands of South Australia. Journal of Arid Environments 51:547-560. https://doi.org/10.1016/S0140-1963(02)90969-9.

Hoff, H., M. Falkenmark, D. Gerten, L. Gordon, L. Karlberg, and J. Rockström. 2010. Greening the global water system. Journal of Hydrology 384:177-186. https://doi.org/10.1016/j.jhydrol.2009.06.026.

Huang, J., H. Yu, X. Guan, G. Wang, and R. Guo. 2016. Accelerated dryland expansion under climate change. Nature Climate Change 6:166-171. https://doi.org/10.1038/nclimate2837.

IPCC. 2014. Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Iriondo, M. 1993. Geomorphology and late quaternary of the Chaco (South America). Geomorphology 7:289-303. https://doi.org/10.1016/0169-555X(93)90059-B.

Jackson, R. B., S. R. Carpenter, C. N. Dahm, D. M. McKnight, R. J. Naiman, S. L. Postel, and S. W. Running. 2001. Water in a changing world. Ecological Applications 11:1027-1045. https://doi.org/10.1890/1051-0761(2001)011[1027:WIACW]2.0.CO;2.

Kahinda, J. M., and A. Taigbenu. 2011. Rainwater harvesting in South Africa: Challenges and opportunities. Physics and Chemistry of the Earth, Parts A/B/C 36:968-976. https://doi.org/10.1016/j.pce.2011.08.011.

Kaptué, A. T., N. P. Hanan, and L. Prihodko. 2013. Characterization of the spatial and temporal variability of surface water in the Soudan‐Sahel region of Africa. Journal of Geophysical Research: Biogeosciences 118:1472-1483. https://doi.org/10.1002/jgrg.20121.

Karlin, M., S. Bernasconi, A. Cora, S. Sánchez, S. Arnulphi, and R. Accietto. 2019. Changes in soil use: infiltration capacity in the center of Córdoba (Argentina). Ciencia del Suelo 37:196-208. https://doi.org/10.31047/1668.298x.v37.n1.28068.

Karlin, M. S., U. O. Karlin, R. O. Coirini, G. J. Reati, and R. M. Zapata. 2013. El Chaco Árido. Universidad Nacional de Córdoba, Córdoba, Argentina. Pp. 420. https://doi.org/10.1155/2013/945190.

Kirby, J., R. Kingham, and M. Cortes. 2001. Texture, density and hydraulic conductivity of some soils in San Luis province, Argentina. Ciencia del Suelo 19:20-29.

Kuemmerle, T., K. Erb, P. Meyfroidt, D. Müller, P. H. Verburg, S. Estel, H. Haberl, P. Hostert, M. R. Jepsen, and T. Kastner. 2013. Challenges and opportunities in mapping land use intensity globally. Current Opinion in Environmental Sustainability 5:484-493. https://doi.org/10.1016/j.cosust.2013.06.002.

Lal, R. 2004. Carbon sequestration in dryland ecosystems. Environmental Management 33:528-544. https://doi.org/10.1007/s00267-003-9110-9.

Lange, R. T. 1969. The piosphere: sheep track and dung patterns. Rangeland Ecology and Management/Journal of Range Management Archives 22:396-400. https://doi.org/10.2307/3895849.

Lavee, H., J. Poesen, and A. Yair. 1997. Evidence of high efficiency water-harvesting by ancient farmers in the Negev Desert, Israel. Journal of Arid Environments 35:341-348. https://doi.org/10.1006/jare.1996.0170.

Lundgren, E. J., D. Ramp, J. C. Stromberg, J. Wu, N. C. Nieto, M. Sluk, K. T. Moeller, and A. D. Wallach. 2021. Equids engineer desert water availability. Science 372:491-495. https://doi.org/10.1126/science.abd6775.

Llano, M. P. 2018. Spatial distribution of the daily rainfall concentration index in Argentina: comparison with other countries. Theoretical and Applied Climatology 133:997-1007. https://doi.org/10.1007/s00704-017-2236-0.

Macchi, L., and H. R. Grau. 2012. Piospheres in the dry Chaco. Contrasting effects of livestock puestos on forest vegetation and bird communities. Journal of Arid Environments 87:176-187. https://doi.org/10.1016/j.jaridenv.2012.06.003.

Magliano, P. N., R. J. Fernández, E. L. Florio, F. Murray, and E. G. Jobbágy. 2017. Soil physical changes after conversion of woodlands to pastures in Dry Chaco rangelands (Argentina). Rangeland Ecology and Management 70:225-229. https://doi.org/10.1016/j.rama.2016.08.003.

Magliano, P. N., R. J. Fernández, R. Giménez, V. A. Marchesini, R. A. Páez, and E. G. Jobbágy. 2016. Cambios en la partición de flujos de agua en el Chaco Árido al reemplazar bosques por pasturas. Ecología Austral 26:95-106. https://doi.org/10.25260/EA.16.26.2.0.148.

Magliano, P. N., R. J. Fernández, J. L. Mercau, and E. G. Jobbágy. 2015a. Precipitation event distribution in central Argentina: Spatial and temporal patterns. Ecohydrology 8:94-104. https://doi.org/10.1002/eco.1491.

Magliano, P. N., D. Mindham, W. Tych, F. Murray, M. D. Nosetto, E. G. Jobbágy, M. J. Niborski, M. C. Rufino, and N. A. Chappell. 2019a. Hydrological functioning of cattle ranching impoundments in the Dry Chaco rangelands of Argentina. Hydrology Research 50:1596-1608. https://doi.org/10.2166/nh.2019.149.

Magliano, P. N., F. Murray, G. Baldi, S. Aurand, R. A. Páez, W. Harder, and E. G. Jobbágy. 2015b. Rainwater harvesting in Dry Chaco: Regional distribution and local water balance. Journal of Arid Environments 123:93-102. https://doi.org/10.1016/j.jaridenv.2015.03.012.

Magliano, P. N., J. I. Whitworth‐Hulse, E. L. Florio, E. C. Aguirre, and L. J. Blanco. 2019b. Interception loss, throughfall and stemflow by Larrea divaricata: The role of rainfall characteristics and plant morphological attributes. Ecological Research 34:753-764. https://doi.org/10.1111/1440-1703.12036.

Manthey, M., and J. Peper. 2010. Estimation of grazing intensity along grazing gradients–the bias of nonlinearity. Journal of Arid Environments 74:1351-1354. https://doi.org/10.1016/j.jaridenv.2010.05.007.

Marchesini, V. A., R. J. Fernández, J. F. Reynolds, J. A. Sobrino, and C. M. Di Bella. 2015. Changes in evapotranspiration and phenology as consequences of shrub removal in dry forests of central Argentina. Ecohydrology 8:1304-1311. https://doi.org/10.1002/eco.1583.

Mbilinyi, B. P., S. D. Tumbo, H. F. Mahoo, E. M. Senkondo, and N. Hatibu. 2005. Indigenous knowledge as decision support tool in rainwater harvesting. Physics and Chemistry of the Earth 30:792-798. https://doi.org/10.1016/j.pce.2005.08.022.

McFeeters, S. K. 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17:1425-1432. https://doi.org/10.1080/01431169608948714.

McNaughton, S. J., M. Oesterheld, D. A. Frank, and K. Williams. 1989. Ecosystem-level patterns of primary productivity and herbivory in terrestrial habitats. Nature 341:142-144. https://doi.org/10.1038/341142a0.

Moreno-de las Heras, M., P. M. Saco, G. R. Willgoose, and D. J. Tongway. 2011. Assessing landscape structure and pattern fragmentation in semiarid ecosystems using patch‐size distributions. Ecological Applications 21:2793-2805. https://doi.org/10.1890/10-2113.1.

Moretti, L. M., H. J. M. Morrás, F. X. Pereyra, and G. A. Schulz. 2019. Soils of the Chaco Region in G. Rubio, R. S. Lavado and F. X. Pereyra (eds.). The Soils of Argentina. 1st edition. Springer. Cham, Switzerland. https://doi.org/10.1007/978-3-319-76853-3_10.

Newman, B. D., B. P. Wilcox, S. R. Archer, D. D. Breshears, C. N. Dahm, C. J. Duffy, N. G. McDowell, F. M. Phillips, B. R. Scanlon, and E. R. Vivoni. 2006. Ecohydrology of water-limited environments: A scientific vision. Water Resources Research 42:1-15. https://doi.org/10.1029/2005WR004141.

Ngigi, S. N. 2003. What is the limit of up-scaling rainwater harvesting in a river basin? Physics and Chemistry of the Earth 28:943-956. https://doi.org/10.1016/j.pce.2003.08.015.

Nosetto, M. D., E. Luna Toledo, P. N. Magliano, P. Figuerola, L. J. Blanco, and E. G. Jobbágy. 2020. Contrasting CO2 and water vapour fluxes in dry forest and pasture sites of central Argentina. Ecohydrology 13:e2244. https://doi.org/10.1002/eco.2244.

Oesterheld, M., O. Sala, and S. McNaughton. 1992. Effect of animal husbandry on herbivore-carrying capacity at a regional scale. Nature 356:234-236. https://doi.org/10.1038/356234a0.

Oweis, T., and A. Hachum. 2009a. Optimizing supplemental irrigation: Tradeoffs between profitability and sustainability. Agricultural Water Management 96:511-516. https://doi.org/10.1016/j.agwat.2008.09.029.

Oweis, T., and A. Hachum. 2009b. Water harvesting for improved rainfed agriculture in the dry environments. Pp. 164-182 in S. P. Wani ( ed.). Rainfed Agriculture: Unlocking the Potential. CAB International. London, UK. https://doi.org/10.1079/9781845933890.0164.

Oyarzabal, M., J. Clavijo, L. Oakley, F. Biganzoli, P. Tognetti, I. Barberis, H. M. Maturo, R. Aragón, P. I. Campanello, and D. Prado. 2018. Unidades de vegetación de la Argentina. Ecología Austral 28:040-063. https://doi.org/10.25260/EA.18.28.1.0.399.

Paruelo, J. M., H. E. Epstein, W. K. Lauenroth, and I. C. Burke. 1997. ANPP estimates from NDVI for the central grassland region of the United States. Ecology 78:953-958. https://doi.org/10.1890/0012-9658(1997)078[0953:AEFNFT]2.0.CO;2.

Pellegrini, P., and R. J. Fernández. 2018. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proceedings of the National Academy of Sciences 115:2335-2340. https://doi.org/10.1073/pnas.1717072115.

Pennington, T. R., D. E. Prado, and C. A. Pendry. 2000. Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography 27:261-273. https://doi.org/10.1046/j.1365-2699.2000.00397.x.

Peña Zubiate, C. A., D. L. Anderson, M. A. Demmi, J. L. Saenz, and A. D'Hiriart. 1998. Carta de suelos y vegetación de la provincia de San Luis. Instituto Nacional de Tecnología Agropecuaria, San Luis, Argentina.

Prăvălie, R. 2016. Drylands extent and environmental issues. A global approach. Earth-Science Reviews 161:259-278. https://doi.org/10.1016/j.earscirev.2016.08.003.

Quiroga, E., L. Blanco, and E. Orionte. 2009a. Evaluación de estrategias de rehabilitación de pastizales áridos. Ecología Austral 19:107-117.

Quiroga, R. E., L. J. Blanco, and C. A. Ferrando. 2009b. A case study evaluating economic implications of two grazing strategies for cattle ranches in northwest Argentina. Rangeland Ecology and Management 62:435-444. https://doi.org/10.2111/08-044.1.

Rockström, J., and M. Falkenmark. 2015. Agriculture: Increase water harvesting in Africa. Nature News 519:283. https://doi.org/10.1038/519283a.

Rodriguez, P., R. Giménez, M. D. Nosetto, E. G. Jobbágy, and P. N. Magliano. 2020. Changes in water fluxes partition related to the replacement of native dry forests by crops in the Dry Chaco. Journal of Arid Environments 183:104281. https://doi.org/10.1016/j.jaridenv.2020.104281.

Rueda, C. V., G. Baldi, S. R. Verón, and E. G. Jobbágy. 2013. Apropiación humana de la producción primaria en el Chaco Seco. Ecología Austral 23:44-54. https://doi.org/10.25260/EA.13.23.1.0.1191.

Saco, P. M., J. F. Rodríguez, M. Moreno-de las Heras, S. Keesstra, S. Azadi, S. Sandi, J. Baartman, J. Rodrigo-Comino, and M. J. Rossi. 2020. Using hydrological connectivity to detect transitions and degradation thresholds: Applications to dryland systems. Catena 186:104354. https://doi.org/10.1016/j.catena.2019.104354.

Samways, M. J., C. Deacon, G. J. Kietzka, J. S. Pryke, C. Vorster, and J. P. Simaika. 2020. Value of artificial ponds for aquatic insects in drought-prone southern Africa: a review. Biodiversity and Conservation 29:3131-3150. https://doi.org/10.1007/s10531-020-02020-7.

Scanlon, B. R., R. C. Reedy, D. A. Stonestrom, D. E. Prudic, and K. F. Dennehy. 2005. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology 11(10):1577-1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x.

Syvitski, J., C. N. Waters, J. Day, J. D. Milliman, C. Summerhayes, W. Steffen, J. Zalasiewicz, A. Cearreta, A. Gałuszka, and I. Hajdas. 2020. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. Commun Earth Environ 1:32. https://doi.org/10.1038/s43247-020-00029-y.

Thornton, P. K. 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences 365(1554):2853-2867. https://doi.org/10.1098/rstb.2010.0134.

Todd, S. W. 2006. Gradients in vegetation cover, structure and species richness of Nama‐Karoo shrublands in relation to distance from livestock watering points. Journal of Applied Ecology 43:293-304. https://doi.org/10.1111/j.1365-2664.2006.01154.x.

Tripaldi, A., M. A. Zárate, S. L. Forman, T. Badger, M. E. Doyle, and P. Ciccioli. 2013. Geological evidence for a drought episode in the western Pampas (Argentina, South America) during the early–mid 20th century. The Holocene 23:1731-1746. https://doi.org/10.1177/0959683613505338.

Umazano, A. M., A. E. O., and S. B. Aimar. 2004. Tajamares: una tecnología alternativa para la zona árida-semiárida de La Pampa. Argentina.

UNEP. 2009. Rainwater harvesting: a lifeline for human well-being. United Nations Environment Programme.

Vivoni, E. R., E. R. Pérez‐Ruiz, Z. T. Keller, E. A. Escoto, R. C. Templeton, N. P. Templeton, C. A. Anderson, A. P. Schreiner‐McGraw, L. A. Méndez‐Barroso, and A. Robles‐Morua. 2021. Long‐term research catchments to investigate shrub encroachment in the Sonoran and Chihuahuan deserts: Santa Rita and Jornada experimental ranges. Hydrological processes 35:e14031. https://doi.org/10.1002/hyp.14031.

Vohland, K. and B. Barry. 2009. A review of in situ rainwater harvesting (RWH) practices modifying landscape functions in African drylands. Agriculture, Ecosystems and Environment 131:119-127. https://doi.org/10.1016/j.agee.2009.01.010.

Zika, M. and K.-H. Erb. 2009. The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecological Economics 69:310-318. https://doi.org/10.1016/j.ecolecon.2009.06.014.

Distribución espacial y controles ambientales de las represas (tajamares) en el Chaco Árido

Descargas

Publicado

2022-02-24

Cómo citar

Niborski, M. J., Murray, F., Jobbágy, E. G., Nosetto, M. D., Fernández, P. D., Castellanos, G., & Magliano, P. N. (2022). Distribución espacial y controles ambientales de las represas (tajamares) en el Chaco Árido. Ecología Austral, 32(1), 158–173. https://doi.org/10.25260/EA.22.32.1.0.1797