Actuar localmente, pensar globalmente. Estudios de hormigas en la Argentina en el contexto de la teoría ecológica

  • Alejandro Farji-Brener Laboratorio de Investigaciones en Hormigas (LIHO). Inibioma-Conicet, Universidad Nacional del Comahue-Centro Universitario Bariloche. San Carlos de Bariloche, Argentina
  • Gabriela Pirk Laboratorio de Investigaciones en Hormigas (LIHO). Inibioma-Conicet, Universidad Nacional del Comahue-Centro Universitario Bariloche. San Carlos de Bariloche, Argentina
  • María N. Lescano Laboratorio de Investigaciones en Hormigas (LIHO). Inibioma-Conicet, Universidad Nacional del Comahue-Centro Universitario Bariloche. San Carlos de Bariloche, Argentina
  • Luciana Elizalde Laboratorio de Investigaciones en Hormigas (LIHO). Inibioma-Conicet, Universidad Nacional del Comahue-Centro Universitario Bariloche. San Carlos de Bariloche, Argentina
  • Victoria Werenkraut Laboratorio de Investigaciones en Hormigas (LIHO). Inibioma-Conicet, Universidad Nacional del Comahue-Centro Universitario Bariloche. San Carlos de Bariloche, Argentina
  • Micaela Buteler Laboratorio de Investigaciones en Hormigas (LIHO). Inibioma-Conicet, Universidad Nacional del Comahue-Centro Universitario Bariloche. San Carlos de Bariloche, Argentina
  • Andrea M. Alma Laboratorio de Investigaciones en Hormigas (LIHO). Inibioma-Conicet, Universidad Nacional del Comahue-Centro Universitario Bariloche. San Carlos de Bariloche, Argentina
  • Daniela Ortiz Laboratorio de Investigaciones en Hormigas (LIHO). Inibioma-Conicet, Universidad Nacional del Comahue-Centro Universitario Bariloche. San Carlos de Bariloche, Argentina
  • Andrés M. Devegili Laboratorio de Investigaciones en Hormigas (LIHO). Inibioma-Conicet, Universidad Nacional del Comahue-Centro Universitario Bariloche. San Carlos de Bariloche, Argentina
Palabras clave: control de plagas, dispersión de semillas, hipótesis ecológicas, hormigas, ingeniería ecológica, interacciones indirectas, invasiones biológicas

Resumen

Construir y probar principios generales es clave para acelerar el progreso científico. En este trabajo revisaremos los estudios realizados en la Argentina en los que las hormigas se usaron como organismo modelo para probar teorías, hipótesis y conceptos ecológicos. Específicamente, nos enfocaremos en los marcos conceptuales de ingeniería ecológica, interacciones indirectas, dispersión de semillas, ensamble de comunidades, invasiones biológicas y manejo integrado de plagas. Estos estudios contribuyeron a: 1) apoyar el concepto de ingenieros ecológicos al estudiar las modificaciones en el ambiente realizadas por las hormigas al construir y mantener sus hormigueros, y las consecuencias de estas modificaciones sobre la biota del suelo, las plantas y los herbívoros; 2) cuestionar la hipótesis de convergencia, que propone que comunidades independientes en ambientes parecidos, pero distantes geográficamente, convergen en composición y funcionamiento; 3) demostrar que la dispersión directa es un proceso que incrementa la adecuación de las plantas en sistemas desérticos; 4) comprender el tipo de control que prevalece en las comunidades (de arriba hacia abajo o de abajo hacia arriba); 5) enfatizar la relevancia de las interacciones indirectas, con ejemplos de cascadas tróficas, facilitación indirecta, competencia por explotación y efectos mediados por rasgos; 6) comprender mejor las causas del éxito o fracaso de las invasiones biológicas, a través del estudio de las características comportamentales y demográficas de las hormigas invasoras en su área nativa, y el papel de la resistencia biótica y la facilitación por mutualismos; y 7) explorar el concepto de manejo integrado de plagas estudiando el uso de enemigos naturales, repelentes y atrayentes, y el comportamiento de la alimentación de plagas. Todos estos trabajos refuerzan el papel clave de las hormigas como organismo modelo para poner a prueba hipótesis ecológicas, y enfatizan la importancia de usar marcos conceptuales como guía para comprender mejor la complejidad de los sistemas naturales.

Citas

Abramsky, Z. 1983. Experiments on seed predation by rodents and ants in the Israeli desert. Oecologia 57:328-332. https://doi.org/10.1007/BF00377176.

Alba-Lynn, C., and S. Henk. 2010. Potential for ants and vertebrate predators to shape seed-dispersal dynamics of the invasive thistles Cirsium arvense and Carduus nutans in their introduced range (North America). Plant Ecol 210:291-301. https://doi.org/10.1007/s11258-010-9757-2.

Alma, A. M., R. G. Pol, L. F. Pacheco, and D. P. Vázquez. 2015. No defensive role of ants throughout a broad latitudinal and elevational range of a cactus. Biotropica 47:347-354. https://doi.org/10.1111/btp.12211.

Alma, A. M., P. C. Fernández, D. Perri, and M. Buteler. 2019. Identification of a novel plant-derived attractant for Acromyrmex lobicornis leaf-cutting ants. Anais Da Academia Brasileira de Ciências 91(03). https://doi.org/10.1590/0001-3765201920181008.

Angulo, E., B. D. Hoffmann, L. Ballesteros-Mejía, A. Taheri, P. Balzani, D. Renault, M. Cordonnier, C. Bellard, C. Diagne, D. A. Ahmed, Y. Watari, and F. Courchamp. 2021. Economic costs of invasive alien ants worldwide. hal-03248768. https://doi.org/10.21203/rs.3.rs-346306/v1.

Aput, L. M., A. G. Farji-Brener, and G. I. Pirk. 2019. Effects of introduced plants on diet and seed preferences of Pogonomyrmex carbonarius in the Patagonian steppe. Environmental Entomology 48:567-572. https://doi.org/10.1093/ee/nvz022.

Aranda-Rickert, A., and S. Fracchia. 2010. Diplochory in two Jatropha (Euphorbiaceae) species of the Monte Desert of Argentina. Austral Ecology 35:226-235. https://doi.org/10.1111/j.1442-9993.2009.02030.x.

Aranda-Rickert, A., and S. Fracchia. 2011. Pogonomyrmex cunicularius as the keystone disperser of elaiosome-bearing Jatropha excisa seeds in semi-arid Argentina. Entomologia Experimentalis et Applicata 139:91-102. https://doi.org/10.1111/j.1570-7458.2011.01111.x.

Aranda-Rickert, A., S. Fracchia, N. Yela, and B. Marazzi. 2017a. Insights into a novel three-partner interaction between ants, coreids (Hemiptera: Coreidae) and extrafloral nectaries: implications for the study of protective mutualisms. Arthropod-Plant Inte 11:525-536. https://doi.org/10.1007/s11829-016-9487-z.

Aranda-Rickert, A., C. Rothen, P. Diez, A. M. González, and B. Marazzi. 2017b. Sugary secretions of wasp galls: a want-to-be extrafloral nectar? Ann Bot 120:765-774. https://doi.org/10.1093/aob/mcx075.

Ballari, S., and A. Farji-Brener. 2006. Refuse dumps of leaf-cutting ants as a deterrent for ant herbivory: does refuse age matter? Entomologia Experimentalis et Applicata 121:215-219. https://doi.org/10.1111/j.1570-8703.2006.00475.x.

Barzman, M., P. Bàrberi, A. N. E. Birch, P. Boonekamp, S. Dachbrodt-Saaydeh, B. Graf, B. Hommel, J. E. Jensen, J. Kiss, P. Kudsk, J. R. Lamichhane, A. Messéan, A.-C. Moonen, A. Ratnadass, P. Ricci, J.-L. Sarah, and M. Sattin. 2015. Eight principles of integrated pest management. Agronomy for Sustainable Development 35:1199-1215. https://doi.org/10.1007/s13593-015-0327-9.

Berg-Binder, M. C., and A. V. Suárez. 2012. Testing the directed dispersal hypothesis: are native ant mounds (Formica sp.) favorable microhabitats for an invasive plant? Oecologia 169:763-772. https://doi.org/10.1007/s00442-011-2243-2.

Bonetto, A. A., R. Manzi, and C. Pignalberi. 1961. Los “tacurúes” de Camponotus punctulatus (Mayr). Physis 12:217-224.

Briano, J., L. Calcaterra, and L. Varone. 2012. Fire ants (Solenopsis spp.) and their natural enemies in southern South America. Psyche 2012:1-19. https://doi.org/10.1155/2012/198084.

Bronstein, J. L., T. E. Huxman, and G. Davidowitz. 2007. Plant-mediated effects linking herbivory and pollination. Pp. 75-103 in T. Ohgushi, T. Craig and P. Price (eds.). Ecological Communities: Plant Mediation in Indirect Interaction Webs. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511542701.005.

Brown, J. H. 1995. Macroecology. University of Chicago Press.

Brown, J. H., O. J. Reichman, and D. W. Davidson. 1979. Granivory in desert ecosystems. Annual Review of Ecology and Systematics 10:201-227. https://doi.org/10.1146/annurev.es.10.110179.001221.

Bucher, E. H. 1982. Chaco and Caatinga-South American arid savannas, woodlands and thickets. Pp. 48-79 in B. J. Huntley and B. Harrison Walker (eds.). Ecology of tropical savannas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68786-0_4.

Bucher, E. H., and R. B. Zuccardi. 1967. Significación de los hormigueros de Atta vollenweideri Forel como alteradores del suelo en la provincia de Tucumán. Acta Zoologica Lilloana 23:83-95.

Buteler, M., A. M. Alma, M. L. Herrera, N. B. Gorosito, and P. C. Fernández. 2021. Novel organic repellent for leaf-cutting ants: tea tree oil and its potential use as a management tool, International Journal of Pest Management 67:1-9. https://doi.org/10.1080/09670874.2019.1657201.

Calcaterra, L. A., J. P. Livore, A. Delgado, and J. A. Briano. 2008. Ecological dominance of the red imported fire ant, Solenopsis invicta, in its native range. Oecologia 156:411-421. https://doi.org/10.1007/s00442-008-0997-y.

Calcaterra, L., S. Cabrera, and J. Briano. 2016. Local co-occurrence of several highly invasive ants in their native range: are they all ecologically dominant species? Insectes Sociaux 63:407-419. https://doi.org/10.1007/s00040-016-0481-3.

Cerda, N. V., M. Tadey, A. G. Farji-Brener, and M. C. Navarro. 2012. Effects of leaf-cutting ant refuse on native plant performance under two levels of grazing intensity in the Monte Desert of Argentina. Applied Vegetation Science 15:479-487. https://doi.org/10.1111/j.1654-109X.2012.01188.x.

Chalcoff, V. R., M. N. Lescano, and A. M. Devegili. 2019. Do novel interactions with local fauna have reproductive consequences for exotic plants? A case study with thistles, ants, aphids, and pollinators. Plant Ecol 220:125-134. https://doi.org/10.1007/s11258-019-00907-2.

Chifflet, L., N. V. Guzmán, O. Rey, V. A. Confalonieri, and L. A. Calcaterra. 2018. Southern expansion of the invasive ant Wasmannia auropunctata within its native range and its relation with clonality and human activity. PLoS ONE 13:1-16. https://doi.org/10.1371/journal.pone.0206602.

Coley, P. D., J. P. Bryant, and F. S. Chapin. 1985. Resource availability and plant antiherbivore defense. Science 230:895-899. https://doi.org/10.1126/science.230.4728.895.

Comita, L. S., S. A. Queenborough, S. J. Murphy, J. L. Eck, K. Xu, M. Krishnadas, N. Beckman, and Y. Zhu. 2014. Testing predictions of the Janzen-Connell hypothesis: A meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. Journal of Ecology 102:845-856. https://doi.org/10.1111/1365-2745.12232.

Connell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Pp. 298-312 in P. J. Den Boer and G. R. Gradwell (eds.). Dynamics of Populations. PUDOC, Wageningen.

Cook, S. M., Z. R. Khan, and J. A. Pickett. 2007. The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375-400. https://doi.org/10.1146/annurev.ento.52.110405.091407.

Cuezzo, F. 2000. Review of the genus Forelius (Hymenoptera: Formicidae: Dolichoderinae). Sociobiology 35:197-277.

Cuezzo, F. C., L. Calcaterra, L. Chifflet, and P. Follet. 2015. Wasmannia Forel (Hymenoptera: Formicidae: Myrmicinae) in Argentina: Systematics and Distribution. Sociobiology 62:246-265. https://doi.org/10.13102/sociobiology.v62i2.246-265.

De Almeida, T., O. Blight, F. Mesléard, A. Bulot, E. Provost, and T. Dutoit. 2020. Harvester ants as ecological engineers for Mediterranean grassland restoration: Impacts on soil and vegetation. Biological Conservation 245:108547. https://doi.org/10.1016/j.biocon.2020.108547.

Del Toro, I., R. R. Ribbons, and S. L. Pelini. 2012. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecological News 17:133-146.

Devegili, A. M., M. N. Lescano, E. Gianoli, and A. G. Farji-Brener. 2020. Defence variation within a guild of aphid-tending ants explains aphid population growth. Ecol Entomol 45:1180-1189. https://doi.org/10.1111/een.12904.

Devegili, A. M., M. N. Lescano, E. Gianoli, and A. G. Farji-Brener. 2021. Evidence of indirect biotic resistance: native ants decrease invasive plant fitness by enhancing aphid infestation. Oecologia 1-12. https://doi.org/10.1007/s00442-021-04874-2.

Devine, G. J., and M. J. Furlong. 2007. Insecticide use: Contexts and ecological consequences. Agriculture and Human Values 24:281-306. https://doi.org/10.1007/s10460-007-9067-z.

Díaz, E. L., J. A. Sabattini, J. P. Hernández, I. A. Sabattini, J. C. Cian, and R. A. Sabattini. 2016. Efecto de los nidos de la hormiga cortadora de hojas Atta vollenweideri sobre las propiedades físicas del suelo en un bosque nativo. Ecología Austral 26:229-235. https://doi.org/10.25260/EA.16.26.3.0.303.

Elizalde, L., and P. J. Folgarait. 2011. Biological attributes of argentinian phorid parasitoids (Insecta: Diptera: Phoridae) of leaf-cutting ants, Acromyrmex and Atta. Journal of Natural History 45:2701-2723. https://doi.org/10.1080/00222933.2011.602478.

Elizalde, L., and P. J. Folgarait. 2012. Behavioural strategies of phorid parasitoids and responses of their hosts, the leaf-cutting ants. Journal of insect science (online) 12:1-26. https://doi.org/10.1673/031.012.13501.

Elizalde, L., M. A. Fernández, A. C. Guillade, and P. J. Folgarait. 2016. Know thy enemy: interspecific differences of pine consumption among leafcutter ants in a plantation. Journal of Pest Science 89:403-411. https://doi.org/10.1007/s10340-015-0702-y.

Elizalde, L., A. C. Guillade, and P. J. Folgarait. 2018a. No evidence of strong host resource segregation by phorid parasitoids of leaf-cutting ants. Acta Oecologica 93:21-29. https://doi.org/10.1016/j.actao.2018.10.005.

Elizalde, L., R. J. W. Patrock, R. H. L. Disney, and P. J. Folgarait. 2018b. Spatial and temporal variation in host-parasitoid interactions: leafcutter ant hosts and their phorid parasitoids. Ecological Entomology 43:114-125. https://doi.org/10.1111/een.12477.

Elizalde, L., and M. Superina. 2019. Complementary effects of different predators of leaf-cutting ants: Implications for biological control. Biological Control 128:111-117. https://doi.org/10.1016/j.biocontrol.2018.09.015.

Elizalde, L., M. Arbetman, X. Arnan, P. Eggleton, I. R. Leal, M. N. Lescano, A. Saez, V. Werenkraut, and G. I. Pirk. 2020. The ecosystem services provided by social insects: traits, management tools and knowledge gaps. Biological Reviews 95:1418-1441. https://doi.org/10.1111/brv.12616.

Elton, C. S. 1958. The ecology of invasions by animals and plants. Methuen, London. https://doi.org/10.1007/978-1-4899-7214-9.

Farji-Brener, A. G. 1992. Modificaciones al suelo realizadas por hormigas cortadoras de hojas (Formicidae, Attini): una revisión de sus efectos sobre la vegetación. Ecología Austral 2:87-94.

Farji-Brener, A. G. 2007. How plants may benefit from their consumers: leaf-cutting ants indirectly improve anti-herbivore defences in Carduus nutans L. Plant Ecology 193:31-38. https://doi.org/10.1007/s11258-006-9246-9.

Farji-Brener, A. G. 2010. Leaf-cutting ant nests and soil biota abundance in a semi-arid steppe of northwestern Patagonia. Sociobiology 56:549-557.

Farji-Brener, A. G., and J. F. Silva. 1995. Leaf-cutting ants and forest groves in a tropical parkland savanna of Venezuela: facilitated succession? Journal of Tropical Ecology 11:651-669. https://doi.org/10.1017/S0266467400009202.

Farji-Brener, A. G., and L. Margutti. 1997. Patterns of plant species in relation to Acromyrmex lobicornis nest-mounds on roadside vegetation in northwest Patagonia. International Journal of Ecology and Environmental Sciences 23:37-47.

Farji-Brener, A. G., and L. Ghermandi. 2000. Influence of leaf‐cutting ants on plant species diversity in road verges of northern Patagonia. Journal of Vegetation Science 11:453-460. https://doi.org/10.2307/3236638.

Farji-Brener, A. G., and Y. Sasal. 2003. Is dump material an effective small-scale deterrent to herbivory by leaf-cutting ants? Ecoscience 10:151-154. https://doi.org/10.1080/11956860.2003.11682761.

Farji-Brener, A. G., and L. Ghermandi. 2004. Seedling recruitment in a semi‐arid Patagonian steppe: Facilitative effects of refuse dumps of leaf‐cutting ants. Journal of Vegetation Science 15:823-830. https://doi.org/10.1111/j.1654-1103.2004.tb02325.x.

Farji-Brener, A. G., and L. Ghermandi. 2008. Leaf-cutting ant nests near roads increase fitness of exotic plant species in natural protected areas. Proceedings of the Royal Society B: Biological Sciences 275:1431-1440. https://doi.org/10.1098/rspb.2008.0154.

Farji-Brener, A. G., and M. Tadey. 2009. Contributions of Leaf-Cutting Ants to Soil Fertility: Causes and Consequences. Pp. 81-91 in P. D. Lucero and J. E. Boggs (eds). Soil Fertility. Nova Science Publishers, New York.

Farji-Brener, A. G., N. Lescano, and L. Ghermandi. 2010. Ecological engineering by a native leaf-cutting ant increases the performance of exotic plant species. Oecologia 163:163-169. https://doi.org/10.1007/s00442-010-1589-1.

Farji-Brener, A. G., and V. Werenkraut. 2015. A meta-analysis of leaf-cutting ant nest effects on soil fertility and plant performance. Ecological Entomology 40:150-158. https://doi.org/10.1111/een.12169.

Farji-Brener, A. G., and M. N. Lescano. 2017. Refuse dumps from leaf-cutting ant nests reduce the intensity of above-ground competition among neighboring plants in a Patagonian steppe. Acta Oecologica 85:136-140. https://doi.org/10.1016/j.actao.2017.10.009.

Farji-Brener, A. G., and V. Werenkraut. 2017. The effects of ant nests on soil fertility and plant performance: a meta-analysis. Journal of Animal Ecology 86:866-877. https://doi.org/10.1111/1365-2656.12672.

Farji-Brener, A. G., M. Tadey, and N. Lescano. 2017. Leaf-cutting ants in Patagonia: how human disturbances affect their role as ecosystem engineers on soil fertility, plant fitness and trophic cascades. Pp. 377-390 in P. S. Oliveira and S. Koptur (eds.). Ant-Plant Interactions: Impacts of Humans on Terrestrial Ecosystems. Cambridge University Press. https://doi.org/10.1017/9781316671825.019.

Felden, A., C. I. Paris, D. G. Chapple, J. Haywood, A. V. Suárez, N. D. Tsutsui, P. J. Lester, and M. A. M. Gruber. 2018. Behavioural variation and plasticity along an invasive ant introduction pathway. Journal of Animal Ecology 87:1653-1666. https://doi.org/10.1111/1365-2656.12886.

Fernández, A., A. G. Farji-Brener, and P. Satti. 2014a. Moisture enhances the positive effect of leaf-cutting ant refuse dumps on soil biota activity. Austral Ecology 39:198-203. https://doi.org/10.1111/aec.12059.

Fernández, A., A. G. Farji-Brener, and P. Satti. 2014b. Factores que influyen sobre la actividad microbiana en basureros de hormigas cortadoras de hojas. Ecología Austral 24:103-110. https://doi.org/10.25260/EA.14.24.1.0.42.

Fernández, A., M. Tadey, and A. G. Farji-Brener. 2019. Refuse attracts? Effect of refuse dumps of leaf-cutting ants on floral traits. Austral Ecology 44:70-77. https://doi.org/10.1111/aec.12653.

Ferreras, A. E., C. Torres, and L. Galetto. 2008. Fruit removal of an invasive exotic species (Ligustrum lucidum) in a fragmented landscape. Journal of Arid Environments 72:1573-1580. https://doi.org/10.1016/j.jaridenv.2008.03.015.

Folgarait, P. J. 1998. Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity and Conservation 7:1221-1244. https://doi.org/10.1023/A:1008891901953.

Folgarait, P. J. 2013. Leaf-Cutter Ant Parasitoids: Current Knowledge. Pysche 2013:539780. https://doi.org/10.1155/2013/539780.

Folgarait, P. J., and L. E. Gilbert. 1999. Phorid parasitoids affect foraging activity of Solenopsis richteri under different availability of food in Argentina. Ecological Entomology 24:163-173. https://doi.org/10.1046/j.1365-2311.1999.00180.x.

Folgarait, P. J., O. A. Bruzzone, R. J. W. Patrock, and L. E. Gilbert. 2002. Developmental rates and host specificity for Pseudacteon parasitoids (Diptera: Phoridae) of fire ants (Hymenoptera: Formicidae) in Argentina. Journal of Economic Entomology 95:1151-1158. https://doi.org/10.1603/0022-0493-95.6.1151.

Folgarait, P. J., S. Perelman, N. Gorosito, R. Pizzio, and J. Fernández. 2002. Effects of Camponotus punctulatus ants on plant community composition and soil properties across land-use histories. Plant Ecol 163:1-13. https://doi.org/10.1023/A:1020323813841.

Folgarait, P. J., and O. E. Sala. 2002. Granivory rates by rodents, insects, and birds at different microsites in the Patagonian steppe. Ecography 25:417-427. https://doi.org/10.1034/j.1600-0587.2002.250404.x.

Folgarait, P. J., R. J. Patrock, and L. E. Gilbert. 2007. Associations of fire ant phorids and microhabitats. Environ Entomol 36:731-742. https://doi.org/10.1093/ee/36.4.731.

Folgarait, P., N. Gorosito, M. Poulsen, and C. R. Currie. 2011. Preliminary In Vitro Insights into the Use of Natural Fungal Pathogens of Leaf-cutting Ants as Biocontrol Agents. Current Microbiology 63:250-258. https://doi.org/10.1007/s00284-011-9944-y.

Folgarait, P. J., D. Goffré, and A. G. Osorio. 2020. Beauveria bassiana for the control of leafcutter ants: strain and host differences. Biocontrol Science and Technology 30:996-1005. https://doi.org/10.1080/09583157.2020.1772199.

Freitas, L., L. Galetto, G. Bernardello, and A. A. S. Paoli. 2000. Ant exclusion and reproduction of Croton sarcopetalus (Euphorbiaceae). Flora 195:398-402. https://doi.org/10.1016/S0367-2530(17)30997-0.

Gallo, J. A., A. M. Abba, L. Elizalde, D. Di Nucci, T. A. Ríos, and M. C. Ezquiaga. 2017. First study on food habits of anteaters, Myrmecophaga tridactyla and Tamandua tetradactyla, in the southern limit of their distribution. Mammalia 81:601-604. https://doi.org/10.1515/mammalia-2016-0117.

Goffré, D., and P. J. Folgarait. 2018. Insights into the biodiversity and causes of distribution of potential entomopathogens associated with leaf-cutting ants. Insectes Sociaux 65:103-115. https://doi.org/10.1007/s00040-017-0592-5.

González-Polo, M., P. J. Folgarait, and A. Martínez. 2004. Evaluación estacional del efecto de los nidos de Camponotus punctulatus sobre la biomasa y la actividad microbiana en una pastura subtropical de Argentina. Ecología Austral 14:149-163.

Guillade, A. C., and P. J. Folgarait. 2015. Effect of phorid fly density on the foraging of Atta vollenweideri leafcutter ants in the field. Entomologia Experimentalis et Applicata 154:53-61. https://doi.org/10.1111/eea.12255.

Heil, M., T. Delsinne, A. Hilpert, S. Schürkens, C. Andary, K. E. Linsenmair, S. Mario Sousa, and D. McKey. 2002. Reduced chemical defence in ant-plants? A critical re-evaluation of a widely accepted hypothesis. Oikos 99:457-468. https://doi.org/10.1034/j.1600-0706.2002.11954.x.

Hölldobler, B., and E. O. Wilson. 1990. The ants. Harvard University Press. https://doi.org/10.1007/978-3-662-10306-7.

Holway, D. A. 1999. Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology 80:238-251. https://doi.org/10.1890/0012-9658(1999)080[0238:CMUTDO]2.0.CO;2.

Holway, D. A., L. Lach, A. V. Suárez, N. D. Tsutsui, and T. J. Case. 2002. The causes and consequences of ant invasions. Annual Review of Ecology and Systematics 33:181-233. https://doi.org/10.1146/annurev.ecolsys.33.010802.150444.

Hubbell, S. P. 2001 The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press.

Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist 104:501-528. https://doi.org/10.1086/282687.

Jiménez, N. L., I. R. Fosco, G. C. Nassar, A. F. Sánchez-Restrepo, M. S. Danna, and L. A. Calcaterra. 2021. Economic Injury Level and Economic Threshold as required by Forest Stewardship Council for management of leaf-cutting ants in forest plantations. Agricultural and Forest Entomology 23:87-96. https://doi.org/10.1111/afe.12409.

Jones, C. G., J. H. Lawton, and M. Shachak. 1994. Organisms as ecosystem engineers. Oikos 69:373-386. https://doi.org/10.2307/3545850.

Jones, C. G., J. H. Lawron, and M. Shachak. 1997. Positive and negative effects of organisms as physical ecosystem engineers. Ecology 78:1946-1957. https://doi.org/10.1890/0012-9658(1997)078[1946:PANEOO]2.0.CO;2.

Johnson, R. A. 2000. Seed-harvester ants (Hymenoptera: Formicidae) of North America: an overview of ecology and biogeography. Sociobiology 36:89-122

Johnson, R. A. 2001. Biogeography and community structure of North American seed harvester ants. Annual Review of Entomology 46:1-29. https://doi.org/10.1146/annurev.ento.46.1.1.

Jonkman, J. C. M. 1978. Nests of the leaf‐cutting ant Atta vollenweideri as accelerators of succession in pastures. Zeitschrift für angewandte Entomologie 86(1‐4):25-34. https://doi.org/10.1111/j.1439-0418.1978.tb01907.x.

Josens, R., F. J. Sola, N. Marchisio, M. A. Di Renzo, and A. Giacometti. 2014. Knowing the enemy: Ant behavior and control in a pediatric hospital of Buenos Aires. Springer Plus 3:1-13. https://doi.org/10.1186/2193-1801-3-229.

Josens, R., A. Mattiacci, J. Lois-Milevicich, and A. Giacometti. 2016. Food information acquired socially overrides individual food assessment in ants. Behav Ecol Sociobiol 70:2127-2138. https://doi.org/10.1007/s00265-016-2216-x.

Josens, R., F. Sola, J. Lois-Milevicich, and W. Mackay. 2017. Urban ants of the city of Buenos Aires, Argentina: species survey and practical control. International Journal of Pest Management 63:213-223. https://doi.org/10.1080/09670874.2016.1239035.

Kaspari, M., and M. D. Weiser. 1999. The size-grain hypothesis and interspecific scaling in ants. Functional Ecology 13:530-538. https://doi.org/10.1046/j.1365-2435.1999.00343.x.

Kerley, G. I. H., and W. G. Whitford. 1994. Desert-dwelling small mammals as granivores: Intercontinental variations. Australian Journal of Zoology 42:543-555. https://doi.org/10.1071/ZO9940543.

Kusnezov, N. 1951. El género Pogonomyrmex Mayr (Hym., Formicidae). Acta Zool Lilloana 11:227-333.

Kusnezov, N. 1963. Zoogeografía de las hormigas en Sudamérica. Acta Zool Lilloana 19:3-186.

Lach, L., and L. M. Hooper-Bui. 2010. Consequences of ant invasions. Pp. 261-286 in L. Lach, C. Parr and K. Abbott (eds.). Ant ecology. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199544639.003.0015.

Lanteri, A. A., and A. Martínez. 2012. Carlos Bruch: pionero de los estudios entomológicos en la Argentina. Revista de la Sociedad Entomológica Argentina 71:179-185.

Lavelle, P., A. Spain, M. Blouin, G. Brown, T. Decaëns, M. Grimaldi, J. J. Jiménez, D. Mckey, J. Mathieu, E. Velasquez, and A. Zangerlé. 2016. Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Science 181:91-109. https://doi.org/10.1097/SS.0000000000000155.

Lawton, J. H. 1999. Are There General Laws in Ecology? Oikos 84:177-177. https://doi.org/10.2307/3546712.

LeBrun, E. G., C. V. Tillberg, A. V. Suárez, P. J. Folgarait, C. R. Smith, and D. A. Holway. 2007. An experimental study of competition between fire ants and Argentine ants in their native range. Ecology 88:63-75. https://doi.org/10.1890/0012-9658(2007)88[63:AESOCB]2.0.CO;2.

Lescano, M. N., and A. G. Farji-Brener. 2011. Exotic thistles increase native ant abundance through the maintenance of enhanced aphid populations. Ecol Res 26:827-834. https://doi.org/10.1007/s11284-011-0842-3.

Lescano, M. N., A. G. Farji-Brener, E. Gianoli, and T. A. Carlo. 2012. Bottom-up effects may not reach the top: The influence of ant-aphid interactions on the spread of soil disturbances through trophic chains. Proceedings of the Royal Society B: Biological Sciences 279:3779-3787. https://doi.org/10.1098/rspb.2012.1066.

Lescano, M. N., A. G. Farji‐Brener, and E. Gianoli. 2014. Nocturnal resource defence in aphid‐tending ants of northern Patagonia. Ecological Entomology 39:203-209. https://doi.org/10.1098/rspb.2012.1066.

Lescano, M. N., C. Quintero, A. G. Farji-Brener, and E. Balseiro. 2019. Pay it forward: refuse dump from leaf-cutting ants promotes caterpillar digestive performance by increasing plant nitrogen content. Ecological Entomology 44:40-49. https://doi.org/10.1111/een.12667.

Lewis, J. P., E. A. Franceschi, and S. L. Stofella. 1991. Effect of ant-hills on the floristic richness of plant communities of a large depression in the Great Chaco. Revista de Biología Tropical 39:31-39.

Lopez de Casenave, J., V. R. Cueto, and L. Marone. 1998. Granivory in the Monte desert, Argentina: is it less intense than in other arid zones of the world? Global Ecology and Biogeography Letters 7:197-204. https://doi.org/10.2307/2997375.

Lowe, S., M. Browne, S. Boudjelas, and M. De Poorter. 2000. 100 of the world's worst invasive alien species: a selection from the global invasive species database. Vol. 12. Auckland: Invasive Species Specialist Group.

MacMahon, J. A., J. F. Mull, and T. O. Crist. 2000. Harvester ants (Pogonomyrmex spp.): their community and ecosystem influences. Annual Review of Ecology and Systematics 31:265-291. https://doi.org/10.1146/annurev.ecolsys.31.1.265.

Mares, M. A., and M. L. Rosenzweig. 1978. Granivory in North and South American deserts: Rodents, birds, and ants. Ecology 59:235-241. https://doi.org/10.2307/1936368.

Marone, L., J. Lopez de Casenave, and V. R. Cueto. 2000. Granivory in Southern South American Deserts: Conceptual issues and current evidence. BioScience 50:123-132. https://doi.org/10.1641/0006-3568(2000)050[0123:GISSAD]2.3.CO;2.

Marquet, P. A., A. P. Allen, J. H. Brown, J. A. Dunne, B. J. Enquist, et al. 2014. On theory in ecology. BioScience 64:701-710. https://doi.org/10.1093/biosci/biu098.

Masciocchi, M., A. G. Farji-Brener, and P. Sackmann. 2010. Competition for food between the exotic wasp Vespula germanica and the native ant assemblage of NW Patagonia: Evidence of biotic resistance? Biological Invasions 12:625-631. https://doi.org/10.1007/s10530-009-9469-5.

Mazzei, M. P., J. L. Vesprini, and L. Galetto. 2020. Visitantes florales no polinizadores en plantas del género Cucurbita y su relación con la presencia de abejas polinizadoras. Acta Agronómica 69. https://doi.org/10.15446/acag.v69n4.87639.

MacArthur R. H., and E. O. Wilson. 2016. The theory of island biogeography. Princeton University Press.

McIntire, E. J. B., and A. Fajardo. 2014. Facilitation as a ubiquitous driver of biodiversity. New Phytologist 201:403-416. https://doi.org/10.1111/nph.12478.

Medina, A. I., A. M. Mangione, and M. García. 2012. Exposure to creosote bush phenolic resin causes avoidance in the leaf- cutting ant Acromyrmex lobicornis (Formicidae : Attini). Revista Chilena de Historial Natural 85:209-218. https://doi.org/10.4067/S0716-078X2012000200007.

Meserve, P. L., D. A. Kelt, W. B. Milstead, and J. R. Gutiérrez. 2003. Thirteen years of shifting top-down and bottom-up control. BioScience 53: 633.646. https://doi.org/10.1641/0006-3568(2003)053[0633:TYOSTA]2.0.CO;2.

Milesi, F. A., and J. Lopez de Casenave. 2004. Unexpected relationships and valuable mistakes: Non-myrmecochorous Prosopis dispersed by messy leafcutting ants in harvesting their seeds. Austral Ecology 29:558-567. https://doi.org/10.1111/j.1442-9993.2004.01390.x.

Montoya-Lerma, J., C. Giraldo-Echeverri, I. Armbrecht, A. G. Farji-Brener, and Z. Calle. 2012. Leaf-cutting ants revisited: towards rational management and control. International Journal of Pest Management 58:225-247. https://doi.org/10.1080/09670874.2012.663946.

Morrison, L. W. 2002. Island biogeography and meta-population dynamics of Bahamian ants. Journal of Biogeography 29:387-394. https://doi.org/10.1046/j.1365-2699.2002.00683.x.

Mukherjee, S., and M. R. Heithaus. 2013. Dangerous prey and daring predators: a review. Biological Reviews 88:550-563. https://doi.org/10.1111/brv.12014.

Nobua Behrmann, B. Ee, F. A. Milesi, J. Lopez de Casenave, R. G. Pol, and B. Pavan. 2010. Tamaño de la colonia y estructura del nido de tres especies de hormigas del género Pogonomyrmex (Hymenoptera: Formicidae) en la porción central del desierto del Monte, Argentina. Revista de la Sociedad Entomológica Argentina 69:117-122

Nobua-Behrmann, B. E., J. Lopez de Casenave, F. A. Milesi, and B. Pavan. 2013. Forager abundance and its relationship with colony activity level in three species of South American Pogonomyrmex harvester ants. Insectes Sociaux 60:243-249. https://doi.org/10.1007/s00040-013-0288-4.

Noy-Meir, I. 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics 4:25-52. https://doi.org/10.1146/annurev.es.04.110173.000325.

Ohgushi, T., O. Schmitz, and R. D. Holt. 2012. Trait-mediated indirect interactions: ecological and evolutionary perspectives. Cambridge University Press. https://doi.org/10.1017/CBO9780511736551.

Oi, D. H., S. D. Porter, S. M. Valles, J. A. Briano, and L. A. Calcaterra. 2009. Pseudacteon decapitating flies (Diptera: Phoridae): Are they potential vectors of the fire ant pathogens Kneallhazia (=Thelohania) solenopsae (Microsporidia: Thelohaniidae) and Vairimorpha invictae (Microsporidia: Burenellidae)? Biological Control 48:310-315. https://doi.org/10.1016/j.biocontrol.2008.11.003.

Orians, G. H., and O. T. Solbrig. 1977. Convergent Evolution in Warm Deserts. Stroudsburg (PA): Dowden. Hutchinson and Ross.

Ortiz, D. P., L. Elizalde, and G. I. Pirk. 2021. Role of ants as dispersers of native and exotic seeds in an understudied dryland. Ecological Entomology 46:626-636. https://doi.org/10.1111/een.13010.

Paris, C. I., M. González Polo, C. Garbagnoli, P. Martínez, G. Somma de Ferré, and P. J. Folgarait. 2008. Litter decomposition and soil organisms within and outside of Camponotus punctulatus nests in sown pastures in Northeastern Argentina. Applied Soil Ecology 40:271-282. https://doi.org/10.1016/j.apsoil.2008.05.005.

Pearson, D. E., N. S. Icasatti, J. L. Hierro, and B. J. Bird. 2014. Are local filters blind to provenance? Ant seed predation suppresses exotic plants more than natives. PLoS ONE 9:1-11. https://doi.org/10.1371/journal.pone.0103824.

Peralta, L., and P. A. Martínez. 2013. Assemblages of oribatid mites in ant nests of Acromyrmex spp. (Hymenoptera, Formicidae). Ecología Austral 23:209-217. https://doi.org/10.25260/EA.13.23.3.0.1160.

Pereyra, M., R. G. Pol, and L. Galetto. 2015. Does edge effect and patch size affect the interaction between ants and Croton lachnostachyus in fragmented landscapes of Chaco forest? Arthropod-Plant Interactions 9:175-186. https://doi.org/10.1007/s11829-015-9361-4.

Pérez, S. P., J. C. Corley, and A. G. Farji-Brener. 2011. Potential impact of the leaf-cutting ant Acromyrmex lobicornis on conifer plantations in northern Patagonia, Argentina. Agricultural and Forest Entomology 13:191-196. https://doi.org/10.1111/j.1461-9563.2010.00515.x.

Perri, D., N. Gorosito, P. Fernández, and M. Buteler. 2017. Plant-based compounds with potential as push-pull stimuli to manage behavior of leaf-cutting ants. Ecologia Experimentalis et Applicata 163:150-159. https://doi.org/10.1111/eea.12574.

Perri, D. V., N. B. Gorosito, P. E. Schilman, E. A. Casaubón, C. Dávila, and P. C. Fernández. 2021. Push-pull to manage leaf-cutting ants: an effective strategy in forestry plantations. Pest Management Science 77:432-439. https://doi.org/10.1002/ps.6036.

Pire, E. F., P. S. Torres, O. D. Romagnoli, and J. P. Lewis. 1991. The significance of ant-hills in depressed areas of the Great Chaco. Revista de Biología Tropical 39:71-76.

Pirk, G. I., and J. Lopez de Casenave. 2006. Diet and seed removal rates by the harvester ants Pogonomyrmex rastratus and Pogonomyrmex pronotalis in the central Monte desert, Argentina. Insectes Sociaux 53:119-125. https://doi.org/10.1007/s00040-005-0845-6.

Pirk, G. I., J. Lopez de Casenave, R. Pol, L. Marone, and F. Milesi. 2009. Influence of temporal fluctuations in seed abundance on the diet of harvester ants (Pogonomyrmex spp.) in the central Monte desert, Argentina. Austral Ecology 39:908-919. https://doi.org/10.1111/j.1442-9993.2009.01999.x.

Pirk, G. I., and J. Lopez de Casenave. 2011. Seed preferences of three harvester ants of the genus Pogonomyrmex (Hymenoptera: Formicidae) in the Monte desert: are they reflected in the diet? Annals of the Entomological Society of America 104:212-220. https://doi.org/10.1603/AN10093.

Pirk, G. I., and J. Lopez de Casenave. 2014. Effect of harvester ants of the genus Pogonomyrmex on the soil seed bank around their nests in the central Monte desert, Argentina. Ecological Entomology 39:610-619. https://doi.org/10.1111/een.12140.

Pirk, G. I., and J. Lopez de Casenave. 2017. Ant interactions with native and exotic seeds in the Patagonian steppe: Influence of seed traits, disturbance levels and ant assemblage. Plant Ecology 218:1255-1268. https://doi.org/10.1007/s11258-017-0764-4.

Pirk, G. I., L. Elizalde, M. N. Lescano, and V. Werenkraut. 2020. Essential but invisible: non-apparent but widespread ant nests favor soil nutrients and plant growth in semi-arid areas. Ecological Entomology 45:1408-1417. https://doi.org/10.1111/een.12925.

Pol, R. G., and J. Lopez de Casenave. 2004. Activity patterns of harvester ants Pogonomyrmex pronotalis and Pogonomyrmex rastratus in the Central Monte Desert, Argentina. Journal of Insect Behavior 17:647-661. https://doi.org/10.1023/B:JOIR.0000042546.20520.c8.

Pol, R. G., J. Lopez de Casenave, and G. I. Pirk. 2011. Influence of temporal fluctuations in seed abundance on the foraging behaviour of harvester ants (Pogonomyrmex spp.) in the central Monte desert, Argentina. Austral Ecology 36:320-328. https://doi.org/10.1111/j.1442-9993.2010.02153.x.

Pol, R. G., F. A. Milesi, and J. Lopez de Casenave. 2015. Foraging strategies and foraging plasticity in harvester ants (Pogonomyrmex spp., Hymenoptera: Formicidae) of the central Monte desert, Argentina. Myrmecological News 21:1-12

Pol, R. G., G. A. Vargas, and L. Marone. 2017. Behavioural flexibility does not prevent numerical declines of harvester ants under intense livestock grazing. Ecological Entomology 42:283-293. https://doi.org/10.1111/een.12388.

Quirán, E., and A. Pilati. 1998. Estructura de los hormigueros de Acromyrmex lobicornis (Hymenoptera: Formicidae) en un sitio natural semiárido de La Pampa, Argentina. Rev Soc Entomol Argent 57:45-48.

Rice, B., and M. Westoby. 1986. Evidence against the hypothesis that ant-dispersed seeds reach nutrient-enriched microsites. Ecology 67:1270-1274. https://doi.org/10.2307/1938682.

Richardson, D. M., N. Allsopp, C. M. D’Antonio, S. J. Milton, and M. Rejmanek. 2000. Plant invasions - the role of mutualisms. Biol Rev 75:65-93. https://doi.org/10.1017/S0006323199005435.

Romero, A. L. N., M. A. H. Moratta, and M. E. Zuliani. 2018. Efecto de los nidos de Acromyrmex lobicornis (Formicidae: Myrmicinae) sobre la descomposición de hojarasca, en el desierto del Monte. Boletín de la Sociedad Argentina de Botánica 53:633-640. https://doi.org/10.31055/1851.2372.v53.n4.21985.

Saba, S. L., and A. Toyos. 2003. Seed removal by birds, rodents and ants in the Austral portion of the Monte Desert, Argentina. Journal of Arid Environments 53:115-124. https://doi.org/10.1006/jare.2002.1029.

Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. Baughman, R. J. Cabin, J. E. Cohen, N. C. Ellstrand, D. E. McCauley, P. O'Neil, I. M. Parker, J. N. Thompson, and S. G. Weller. 2001. The population biology of invasive species. Annu Rev Ecol Syst 32:305-332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037.

Sanders, N. J. 2002. Elevational gradients in ant species richness: area, geometry, and Rapoport's rule. Ecography 25:25-32. https://doi.org/10.1034/j.1600-0587.2002.250104.x.

Savolainen, R., and K. Vepsäläinen. 1988. A competition hierarchy among boreal ants: impact on resource partitioning and community structure. Oikos 51:135-155. https://doi.org/10.2307/3565636.

Scheiner, S. M., and M. R. Willig. 2019. The theory of ecology. University of Chicago Press.

Schoener, T. W. 1987. A brief history of optimal foraging ecology. Pp 5-67 in A. C. Kamil, J. R. Krebs and H. Ronald Pulliam (eds.). Foraging behavior. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1839-2_1.

Schupp, E. W., P. Jordano, and J. M. Gómez. 2010. Seed dispersal effectiveness revisited: a conceptual review. New Phytologist 188:333-353. https://doi.org/10.1111/j.1469-8137.2010.03402.x.

Segev, U., J. Kigel, Y. Lubin, and K. Tielbörger. 2015. Ant abundance along a productivity gradient: Addressing two conflicting hypotheses. PloS ONE 10:e0131314. https://doi.org/10.1371/journal.pone.0131314.

Simberloff, D. 2003. How much information on population biology is needed to manage introduced species? Conservation Biology 17:83-92. https://doi.org/10.1046/j.1523-1739.2003.02028.x.

Simonetti, G., and M. Devoto. 2018. La defensa de Passiflora caerulea por hormigas reduce el número de huevos y larvas de Agraulis vanillae, pero no el daño por herbivoría. Ecología Austral 28:123-132. https://doi.org/10.25260/EA.18.28.1.0.635.

Sola, F., A. Falibene, and R. Josens. 2013. Asymmetrical behavioral response towards two boron toxicants depends on the ant species (Hymenoptera: Formicidae). Journal of Economic Entomology 106:929-938. https://doi.org/10.1603/EC12246.

Sosa, B., A. Brazeiro. 2012. Local and landscape‐scale effects of an ant nest construction in an open dry forest of Uruguay. Ecological Entomology 37:252-255. https://doi.org/10.1111/j.1365-2311.2012.01352.x.

Sotomayor, D. A., and C. J. Lortie. 2015. Indirect interactions in terrestrial plant communities: Emerging patterns and research gaps. Ecosphere 6:1-23. https://doi.org/10.1890/ES14-00117.1.

Superina, M., F. Fernández Campón, E. L. Stevani, and R. Carrara. 2009. Summer diet of the pichi Zaedyus pichiy (Xenarthra: Dasypodidae) in Mendoza Province, Argentina. Journal of Arid Environments 73:683-686. https://doi.org/10.1016/j.jaridenv.2009.01.011.

Tadey, M., and A. G. Farji-Brener. 2007. Indirect effects of exotic grazers: Livestock decreases the nutrient content of refuse dumps of leaf-cutting ants through vegetation impoverishment. Journal of Applied Ecology 44:1209-1218. https://doi.org/10.1111/j.1365-2664.2007.01338.x.

Tilman, D. 1990. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 58:3-15. https://doi.org/10.2307/3565355.

Traveset, A., and D. M. Richardson. 2014. Mutualistic interactions and biological invasions. Annu Rev Ecol Evol Syst 45:89-113. https://doi.org/10.1146/annurev-ecolsys-120213-091857.

Valles, S. M., S. D. Porter, and L. A. Calcaterra. 2018. Prospecting for viral natural enemies of the fire ant Solenopsis invicta in Argentina. PLoS ONE 13:e0192377. https://doi.org/10.1371/journal.pone.0192377.

Vesprini, J. L., L. Galetto, and G. Bernardello. 2003. The beneficial effect of ants on the reproductive success of Dyckia floribunda (Bromeliaceae), an extrafloral nectary plant. Canadian Journal of Botany 81:24-27. https://doi.org/10.1139/b03-003.

Vilela, A. E., and D. A. Ravetta. 2000. The effect of radiation on seedling growth and physiology in four species of Prosopis L. (Mimosaceae). Journal of Arid Environ 44:415-23. https://doi.org/10.1006/jare.1999.0604.

Vilela, A. E., and D. A. Ravetta. 2001. The effect of seed scarification and soil-media on germination, growth, storage, and survival of seedlings of five species of Prosopis L. (Mimosaceae). Journal of Arid Environ 48:171-84. https://doi.org/10.1006/jare.2000.0735.

Vittar, F., and F. D. C. Cuello. 2017. Ants (Hymenoptera: Formicidae) of Santa Fe province, Argentina. Revista de la Sociedad Entomológica Argentina 67:175-178.

Walter, G. H. 2005. Insect Pest Management and Ecological Research. Cambridge University Press.

Wenny, D. G. 2001. Advantages of seed dispersal: A re-evaluation of directed dispersal. Evolutionary Ecology Research 3:51-74.

Wilson, E. O. 1987. The little things that run the world (The Importance and Conservation of Invertebrates). Conservation Biology 1:344-346. https://doi.org/10.1111/j.1523-1739.1987.tb00055.x.

Wootton, J. T. 1994. The Nature and Consequences of Indirect Effects in Ecological Communities. Annual Review of Ecology and Systematics 25:443-466. https://doi.org/10.1146/annurev.es.25.110194.002303.

Wright, J. P., and C. G. Jones. 2006. The concept of organisms as ecosystem engineers ten years on: Progress, limitations, and challenges. BioScience 56:203-209. https://doi.org/10.1641/0006-3568(2006)056[0203:TCOOAE]2.0.CO;2.

Wright, J. P., C. G. Jones, and A. S. Flecker. 2002. An ecosystem engineer, the beaver, increases species richness at the landscape scale. Oecologia 132:96-101. https://doi.org/10.1007/s00442-002-0929-1.

Actuar localmente, pensar globalmente. Estudios de hormigas en la Argentina en el contexto de la teoría ecológica
Publicado
2022-04-14
Número
Sección
Sección Especial