Efecto hipotético del cambio climático sobre la distribución de dos especies leñosas dominantes del Chaco Serrano

  • Francisco G. Alaggia Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Forestal INTA Villa Dolores. Centro Científico Tecnológico del Consejo Nacional de Investigaciones Científicas y Técnicas (CCT), Córdoba, Argentina
  • Romina C. Torres Centro de Ecología y Recursos Naturales Renovables. FCEFyN, Universidad Nacional de Córdoba. Córdoba, Argentina. Instituto de Investigaciones Biológicas y Tecnológicas (IIByT-CONICET-Universidad Nacional de Córdoba). Córdoba, Argentina
  • Javier Nori Centro de Zoología Aplicada. Jardín Zoológico. Córdoba, Argentina. Instituto de Diversidad y Ecología Animal (IDEA-CONICET-Universidad Nacional de Córdoba). Córdoba, Argentina
Palabras clave: Modelos de distribución de especies, Schinopsis haenkeana, Lithraea molleoides, Calentamiento global, Areas protegidas, nicho climático, SDM

Resumen

Lithraea molleoides (Anacardiaceae) y Schinopsis haenkeana (Anacardiaceae) son especies arbóreas nativas de gran importancia en el Chaco Serrano, una región poco estudiada en relación con los posibles efectos que el cambio climático (CC) podría generar sobre su extensión. En la actualidad, los modelos de distribución de especies se encuentran entre las herramientas que más se utilizan para evaluar la conservación de especies arbóreas en el contexto del CC. Dichos modelos permiten estudiar la distribución potencial actual y la hipotética futura de las especies. Utilizando técnicas de modelado, estudiamos la distribución potencial de estas especies para las condiciones climáticas actuales e hipotéticas futuras (período 2041-2060). Además, empleando sistemas de información geográfica determinamos el porcentaje de la distribución de cada especie superpuesta con áreas protegidas. Los modelos obtenidos indicaron un área de distribución potencial de 1124737 km2 para L. molleoides y de 158491 km2 para S. haenkeana. Bajo los escenarios hipotéticos de CC, L. molleoides mostró una reducción del 18% en su distribución potencial, mientras que S. haenkeana evidenció un aumento del 14% en la distribución potencial; ambas especies presentaron desplazamientos hacia mayores latitudes y elevaciones. Estos resultados sugieren que el CC podría generar cambios importantes sobre la distribución de especies en subregiones aún poco estudiadas del continente, como el Chaco Serrano. La representación de las dos especies en áreas protegidas de categorías I a IV de la Unión Internacional para la Conservación de la Naturaleza fue menor al 10% de su superficie de distribución potencial. Por ello, sugerimos aumentar la superficie protegida teniendo en cuenta los cambios en la distribución potencial bajo escenarios climáticos de calentamiento a futuro, e implementar estrategias de conservación que tengan en cuenta el aprovechamiento sustentable del bosque.

Citas

Araújo, M. B., and M. New. 2007. Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22:42-47. https://doi.org/10.1016/j.tree.2006.09.010.

Argañaraz, J. P., A. M. Cingolani, L. M. Bellis, and M. Giorgis. 2020. Fire incidence along an elevation gradient in the mountains of central Argentina. Ecología Austral 30(2):268-281. https://doi.org/10.25260/EA.20.30.2.0.1054.

Baldi, G., S. Schauman, M. Texeira, S. Marinaro, O. A. Martin, P. Gandini, and E. G. Jobbágy. 2019. Nature representation in South American protected areas: Country contrasts and conservation priorities. PeerJ 7:e7155. https://doi.org/10.7717/peerj.7155.

Barve, N., V. Barve, A. Jiménez-Valverde, A. Lira-Noriega, S. P. Maher, A. T. Peterson, J. Soberón, and F. Villalobos. 2011. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222:1810-1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011.

Benito Garzón, M., R. Sánchez De Dios, and H. Sáinz Ollero. 2007. Predictive modelling of tree species distributions on the Iberian Peninsula during the Last Glacial Maximum and Mid-Holocene. Ecography 30:120-134. https://doi.org/10.1111/j.0906-7590.2007.04813.x.

Bosso, L., N. Luchi, G. Maresi, G. Cristinzio, S. Smeraldo, and D. Russo. 2017. Predicting current and future disease outbreaks of Diplodia sapinea shoot blight in Italy: species distribution models as a tool for forest management planning. Forest Ecology and Management 400:655-664. https://doi.org/10.1016/j.foreco.2017.06.044.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone. 1984. Classification and Regression Trees. First edition. Routledge. Boca Raton, USA. Pp. 368. https://doi.org/10.1201/9781315139470.

Carvalho, M. C., L. R. Gomide, R. M. dos Santos, J. R. Soares Scolforo, L. M. T. de Carvalho, and J. M. de Mello. 2017. Modelagem do nicho ecológicos de espécies arbóreas em uma área tropical brasileira. Cerne 23:229-240. https://doi.org/10.1590/01047760201723022308.

Cortés, S. S., J. I. Whitworth-Hulse, E. L. Piovano, D. E. Gurvich, and P. N. Magliano. 2020. Changes in rainfall partitioning caused by the replacement of native dry forests of Lithraea molleoides by exotic plantations of Pinus elliottii in the dry Chaco mountain forests, central Argentina. J Arid Land 12:717-729. https://doi.org/10.1007/s40333-020-0070-1.

Cuyckens, G. A. E., D. A. Christie, A. I. Domic, L. R. Malizia, and D. Renison. 2016. Climate change and the distribution and conservation of the world’s highest elevation woodlands in the South American Altiplano. Global and Planetary Change 137:79-87. https://doi.org/10.1016/j.gloplacha.2015.12.010.

Descombes, P., L. Walthert, A. Baltensweiler, R. G. Meuli, D. N. Karger, C. Ginzler, D. Zurell, and N. E. Zimmermann. 2020. Spatial modelling of ecological indicator values improves predictions of plant distributions in complex landscapes. Ecography 43(10):1448-1463. https://doi.org/10.1111/ecog.05117.

Dedecker, A., P. Goethals, W. Gabriels and N. De Pauw. 2004. Optimization of Artificial Neural Network (ANN) model design for prediction of macroinvertebrates in the Zwalm river basin (Flanders, Belgium). Ecological Modelling 174(1-2):161-173. https://doi.org/10.1016/j.ecolmodel.2004.01.003.

Del Moral, R., J. M. Saura, and J. N. Emenegger. 2010. Primary succession trajectories on a barren plain, Mount St. Helens, Washington. Journal of Vegetation Science 21(5):857-867. https://doi.org/10.1111/j.1654-1103.2010.01189.x.

Demaio, P. H., M. Medina, and U. O. Karlin. 2015. Árboles nativos del centro de Argentina. Primera edición. Ecoval. Buenos Aires, Argentina.

Diniz-Filho, J. A. F., L. Mauricio Bini, T. Fernando Rangel, R. D. Loyola, C. Hof, D. Nogués-Bravo, and M. B. Araújo. 2009. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897-906. https://doi.org/10.1111/j.1600-0587.2009.06196.x.

Dullinger, S., A. Gattringer, W. Thuiller, D. Moser, N. E. Zimmermann, A. Guisan, W. Willner, C. Plutzar, M. Leitner, T. Mang, M. Caccianiga, T. Dirnböck, S. Ertl, A. Fischer, J. Lenoir, J. C. Svenning, A. Psomas, D. R. Schmatz, U. Silc, P. Vittoz, and K. Hülber. 2012. Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change 2(8):619-622. https://doi.org/10.1038/nclimate1514.

Dyderski, M., S. Paz, L. Frelich, and A. Jagodzinki. 2018. How much does climate change threaten European forest tree species distributions? Global Change Biology 24:1150-1163. https://doi.org/10.1111/gcb.13925.

Ellison, A. M., M. S. Bank, B. D. Clinton, E. A. Colburn, K. Elliott, C. R. Ford, D. R. Foster, B. D. Kloeppel, J. D. Knoepp, G. M. Lovett, J. Mohan, D. A. Orwig, N. L. Rodenhouse, W. V. Sobczak, K. A. Stinson, J. K. Stone, C. M. Swan, J. Thompson, B. Von Holle, and J. R. Webster. 2005. Loss of foundation species: Consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment 3:479-486. https://doi.org/10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2.

Feeley, K. J., and M. R. Silman. 2010. Land‐use and climate change effects on population size and extinction risk of Andean plants. Global Change Biology 16(12):3215-3222. https://doi.org/10.1111/j.1365-2486.2010.02197.x.

Fehlenberg, V., M. Baumann, N. I. Gasparri, M. Piquer-Rodríguez, G. Gavier-Pizarro, and T. Kuemmerle. 2017. The role of soybean production as an underlying driver of deforestation in the South American Chaco. Global Environmental Change 45:24-34. https://doi.org/10.1016/j.gloenvcha.2017.05.001.

Fleming, P. A., J. J. Wentzel, S. J. Dundas, T. L. Kreplins, M. D. Craig, and G. E. S. J. Hardy. 2021. Global meta-analysis of tree decline impacts on fauna. Biological Reviews 96(5):1744-1768. https://doi.org/10.1111/brv.12725.

Flores, C. B., M. A. Zapater, and S. Sühring. 2013. Identidad taxonómica de Schinopsis lorentzii y Schinopsis marginata (Anacardiaceae). Darwiniana 1:25-38.

Franklin, J., K. E. Wejnert, S. A. Hathaway, C. J. Rochester, and R. N. Fisher. 2009. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Diversity and Distributions 15:167-177. https://doi.org/10.1111/j.1472-4642.2008.00536.x.

Friedman, J. H. 2001. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29:1189-1232. https://doi.org/10.1214/aos/1013203451.

Garcia, R. A., M. Cabeza, C. Rahbek, and M. B. Araújo. 2014. Multiple dimensions of climate change and their implications for biodiversity. Science 344(6183). https://doi.org/10.1126/science.1247579.

García, R. A., J. Franzese, N. Policelli, Y. Sasal, R. D. Zenni, M. A. Núñez, K. Taylor, and A. Pauchard. 2019. Non-native pines are homogenizing the ecosystems of South America. Pp. 245-263 in R. Rozzi, H. M. Jr. Roy, F. Stuart Chapin III, F. Massardo, M. C. Gavin, I. J. Klaver, A. Pauchard, M. A. Núñez and D. Simberloff (eds.). From Biocultural Homogenization to Biocultural Conservation. Springer, Cham, Suiza. https://doi.org/10.1007/978-3-319-99513-7_15.

Giorgis, M. A., A. M. Cingolani, D. E. Gurvich, P. A. Tecco, J. Chiapella, F. Chiarini, and M. Cabido. 2017. Changes in floristic composition and physiognomy are decoupled along elevation gradients in central Argentina. Applied Vegetation Science 20:558-571. https://doi.org/10.25260/EA.20.30.2.0.1054.

Giorgis, M. A., A. M. Cingolani, F. Chiarini, J. Chiapella, G. Barboza, L. Ariza Espinar, R. Morero, D. E. Gurvich, P. A. Tecco, R. Subils, and M. Cabido. 2011. Composición florística del Bosque Chaqueño Serrano de la provincia de Córdoba, Argentina. Kurtziana 36(1):9-43.

Hamann, A., and T. L. Wang. 2006. Potential effects of climate change on ecosystem and tree species distribution in British Columbia. Ecology 87:2773-2786. https://doi.org/10.1890/0012-9658(2006)87[2773:PEOCCO]2.0.CO;2.

Hijmans, R. J., S. E. Cameron, J. L. Parra, P. G. Jones, and A. Jarvis. 2005. Very high-resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25:1965-1978. https://doi.org/10.1002/joc.1276.

Lenoir, J., J. C. Gégout, P. A. Marquet, P. De Ruffray, and H. Brisse. 2008. A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768-1771. https://doi.org/10.1126/science.1156831.

Li, X., and Y. Wang. 2013. Applying various algorithms for species distribution modelling. Integrative Zoology 8:124-135. https://doi.org/10.1111/1749-4877.12000.

Maldonado, C., C. I. Molina, A. Zizka, A. C. Persson, M. C. Taylor, J. Albán, E. Chilquillo, N. E., Ronsted, and A. Antonelli. 2015. Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? Global Ecology and Biogeography 24(8):973-984. https://doi.org/10.1111/geb.12326.

Mogni, V., D. E. Prado, and L. J. Oakley. 2017. Notas nomenclaturales en el género Schinopsis (Anacardiaceae). Boletín de la Sociedad Argentina de Botánica 52:185-190.

Muñoz, J. de D. 2000. Anacardiaceae. En Flora Fanerogámica Argentina. Fascículo 65:1-28. Programa ProFlora (CONICET-Córdoba), 1994-2008.

Nori, J., P. A. Carrasco, and G. C. Leynaud. 2014. Venomous snakes and climate change: Ophidism as a dynamic problem. Climatic Change 122:67-80. https://doi.org/10.1007/s10584-013-1019-6.

Nori, J., R. Torres, J. Lescano, M. Cordier, M. E. Periago, and D. Baldo. 2016. Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world. Wiley Online Library 22:1212-1219. https://doi.org/10.1111/ddi.12497.

Olson, D. M., E. Dinerstein, E. D. Wikramanayake, N. D. Burgess, G. V. N. Powell, E. C. Underwood, J. A. D’Amico, I. Itoua, H. E. Strand, J. C. Morrison, C. J. Loucks, T. F. Allnutt, T. H. Ricketts, Y. Kura, J. F. Lamoreux, W., W. Wettengel, P. Hedao, and K. R. Kassem. 2001. Terrestrial ecoregions of the world: A new map of life on Earth. BioScience 51:933-938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2.

Perosa, M., F. Rojas, P. Villagra, M. F. Tognelli, R. Carrara, and J. A. Álvarez. 2014. Distribución potencial de los bosques de Prosopis flexuosa en la Provincia Biogeográfica del Monte (Argentina). Ecología Austral 24:238-248. https://doi.org/10.25260/EA.14.24.2.0.27.

Peterson, A. T., J. Soberon, R. G. Pearson, and R. P. Anderson. 2011. Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press. Princeton, USA. https://doi.org/10.1515/9781400840670.

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

Renison, D., G., A. E. Cuyckens, S. Pacheco, G. F. Guzmán, H. Ricardo Grau, P. Marcora, G. Robledo, A. M. Cingolani, J. Dominguez, M. Landi, L. Bellis, and I. Hensen. 2013. Distribución y estado de conservación de las poblaciones de árboles y arbustos del género Polylepis (Rosaceae) en las montañas de Argentina. Ecología Austral 23:27-36. https://doi.org/10.25260/EA.13.23.1.0.1189.

Sayre, R., J. Bow, C. Josse, L. Sotomayor, and J. Touval. 2008. Terrestrial Ecosystems of South America. Page North America Land Cover Summit. Association of American Geographers. Reston, Virginia, USA.

Srur, A. M., R. Villalba, M. Rodríguez-Catón, M. M. Amoroso, and E. Marcotti. 2018. Climate and Nothofagus pumilio Establishment at Upper Treelines in the Patagonian Andes. Frontiers in Earth Science 6:57. https://doi.org/10.3389/feart.2018.00057.

Shukla, P. R., J. Skea, E. Calvo Buendia, V. Masson-Delmotte, H. O. Pörtner, D. C. Roberts, P. Zhai, R. Slade, S. Connors, R. Diemen, M. Ferrat, E. Haughey, S. Luz, S. Neogi, M. Pathak, J. Petzold, J. Portugal Pereira, P. Vyas, E. Huntley, K. Kissick, M. Belkacemi, and J. Malley. 2019. Climate change and land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. IPCC, Intergovernmental Panel on Climate Change. Geneva, Switzerland.

Suárez, C. F., V. Y. Mogni, S. S. Garralla, D. E. Prado, and O. G. Martínez. 2019. Morfología polínica de las especies chaqueñas del género Schinopsis Engl. (Anacardiaceae) y sus implicancias taxonómicas. Hoehnea 46:1-10. https://doi.org/10.1590/2236-8906-76/2018.

Thiers, B. 2021. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. URL: sweetgum.nybg.org/ih.

Torres, R. C., and D. Renison. 2016. Indirect facilitation becomes stronger with seedling age in a degraded seasonally dry forest. Acta Oecologica 70:138-143. https://doi.org/10.1016/j.actao.2015.12.006.

Torres, R. C., and D. Renison. 2017. Human-induced vegetation changes did not affect tree progeny performance in a seasonally dry forest of central Argentina. Journal of Arid Environments 147:125-132. https://doi.org/10.1016/j.jaridenv.2017.07.016.

Torres, R. C., and D. Renison. 2020. Capacidad germinativa y longevidad en semillas de dos especies arbóreas nativas del bosque serrano en el Centro Argentino. Quebracho 28(1,2):54-61.

UNEP-WCMC, IUCN and NGS (2020). Protected Planet Report 2020. Cambridge UK; Gland, Switzerland; and Washington, D.C., USA.

Walter, K. S., and H. J. Gillett (eds.). 1998. 1997 IUCN Red List of Threatened Plants. Compiled by the World Conservation Monitoring Centre. IUCN - The World Conservation Union, Gland, Suiza y Cambridge, UK.

Wan, J. Z., C. J. Wang, and F. H. Yu. 2017. Spatial conservation prioritization for dominant tree species of Chinese forest communities under climate change. Climatic Change 144(2):303-316. https://doi:10.1007/s10584-017-2044-7.

Wang, C. J., Z. X. Zhang, and J. Z. Wan. 2019. Vulnerability of global forest ecoregions to future climate change. Global Ecology and Conservation 20:e00760. https://doi.org/10.1016/j.gecco.2019.e00760.

Yang, J., L. Vázquez, L. Feng, Z. Liu, and G. Zhao. 2018. Climatic and soil factors shape the demographical history and genetic diversity of a deciduous oak (Quercus liaotungensis) in Northern China. Frontiers In Plant Science 9:1534. https://doi.org/10.3389/fpls.2018.01534

Yu, D., Y. Liu, P. Shi, and J. Wu. 2019. Projecting impacts of climate change on global terrestrial ecoregions. Ecological Indicators 103:114-123. https://doi.org/10.1016/j.ecolind.2019.04.006

Zeballos, S. R., M. A. Giorgis, M. R. Cabido, A. T. R. Acosta, M. D. R. Iglesias, and J. J. Cantero. 2020. The lowland seasonally dry subtropical forests in central Argentina: vegetation types and a call for conservation. Vegetation Classification And Survey 1(1):87-102. https://doi.org/10.1127/VCS/2019/38013.

Zuloaga, F. O., O. Morrone, M. J. Belgrano, C. Marticorena, and E. Marchesi. 2008. Catálogo de Las Plantas Vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Missouri Botanical Garden Press 2:985. 3 volumes. Pp. 3486. Missouri, United states. ISBN 978-1-930723-70-2.

Efecto hipotético del cambio climático sobre la distribución de dos especies leñosas dominantes del Chaco Serrano
Publicado
2022-05-18