Diagnóstico y estrategias para gestionar residuos de cocina y alimentos en un comedor institucional en Buenos Aires, Argentina

  • Marta S. Zubillaga Cátedra de Fertilidad y Fertilizantes, Departamento de Ingeniería Agrícola y Uso de la Tierra, Facultad de Agronomía, Universidad de Buenos Aires (UBA)
  • Julieta García Serra Cátedra de Fertilidad y Fertilizantes, Departamento de Ingeniería Agrícola y Uso de la Tierra, Facultad de Agronomía, Universidad de Buenos Aires (UBA)
  • Agustina Branzini Cátedra de Fertilidad y Fertilizantes, Departamento de Ingeniería Agrícola y Uso de la Tierra, Facultad de Agronomía, Universidad de Buenos Aires (UBA)
  • Fiorella Semino Cátedra de Fertilidad y Fertilizantes, Departamento de Ingeniería Agrícola y Uso de la Tierra, Facultad de Agronomía, Universidad de Buenos Aires (UBA)
  • Jonathan Rey Juttel Cátedra de Fertilidad y Fertilizantes, Departamento de Ingeniería Agrícola y Uso de la Tierra, Facultad de Agronomía, Universidad de Buenos Aires (UBA)
Palabras clave: protocolo de muestreo, manejo de residuos, economia circular

Resumen

Clasificar y cuantificar los residuos de cocina y alimentos es una estrategia necesaria para mejorar la sostenibilidad de la gestión de residuos. El objetivo de este estudio fue cuantificar y describir los residuos sólidos generados en la cocina (zona de procesamiento) y el comedor de una institución oficial a lo largo de un año. Se estableció un protocolo de muestreo de residuos que permitió identificar, clasificar y caracterizar los residuos. Se generaron 802.4 kg de residuo total/día, lo que representa 0.34 kg.día-1.persona-1, con promedios similares en las zonas de procesamiento y comedor; la generación fue mayor durante las comidas principales. Se identificaron residuos secos (15%), húmedos (73%) y mixtos (11.8%). Los residuos secos se generaron sobre todo en la zona de procesamiento, y para gestionarlos durante la preparación del menú principal se proponen las practicas incluidas en las 4R. La estrategia de separación en origen en dicha área permitiría reducir el 93.5% de los residuos mixto. El residuo húmedo generado fue 587.77 kg/día; entre otras características, presentó un pH ácido, un alto contenido de humedad, una composición equilibrada de biomasa lignocelulósica y relaciones C/N dentro del rango considerado óptimo para transformación biológica como compostaje aeróbico o digestión o fermentación anaeróbica. Además, es rico en proteínas y fibras, por lo cual se propone fabricar piensos como destino alternativo a los procesos de digestión. Este estudio permite identificar un gran potencial para la gestión sostenible de la pérdida y el desperdicio de alimentos, en línea con los objetivos de la economía circular.

Biografía del autor/a

Marta S. Zubillaga, Cátedra de Fertilidad y Fertilizantes, Departamento de Ingeniería Agrícola y Uso de la Tierra, Facultad de Agronomía, Universidad de Buenos Aires (UBA)

Profesora adjunta

Fertilidad y Fertilizantes

FAUBA

Citas

Ankom. 2005. Subject: Neutral Detergent Fiber in Feeds. Filter bags technique (ANKOM200). URL: tinyurl.com/5m4568p9.

AOAC International (formerly the Association of Official Analytical Chemists). 1990. Official Methods of Analysis. Arlington, VA: AOAC International. Nro. 942.05. URL: aoac.org.

Bilal, M., Z. Wang, J. Cui, L. F. Romanholo Ferreira, R. N. Bharagava, and H. M. N. Iqbal. 2020. Environmental impact of lignocellulosic wastes and their effective exploitation as smart carriers - A drive towards greener and eco-friendlier biocatalytic systems. Sci Total Environ 722:137903. https://doi.org/10.1016/j.scitotenv.2020.137903.

Brancoli, P., K. Bolton, K. Rousta, and M. Eriksson. 2021. Life-Cycle Assessment and Sustainability Aspects of Food Waste. Pp. 395-417 in J. Wong, G. Kaur, M. Taherzadeh, A. Pandey and K. Lasaridi (eds.). Current Developments in Biotechnology and Bioengineering. Elsevier. https://doi.org/10.1016/B978-0-12-819148-4.00015-4.

Branzini, A., and M. S. Zubillaga. 2010. Assessing phytotoxicity of heavy metals in remediated soils. Int J Phytoremediation 12:335-342. https://doi.org/10.1080/15226510902968126.

Cai, J., W. W. Zhang, and J. Z. Yun. 2015. Optimization of microbial fermentation process to produce protein feed from kitchen waste. China Brew 34(2):114-119. https://doi.org/10.19080/AIBM.2018.08.555727.

Caihong, S., L. Mingxiao, Q. Hui, Z. Yali, L. Dongming, X. Xunfeng, P. Hongwei, and X. Beidou. 2018. Impact of anti-acidification microbial consortium on carbohydrate metabolism of key microbes during food waste composting. Bioresour Technol 259:1-9. https://doi.org/10.1016/j.biortech.2018.03.022.

Chang, N. B., and E. Davila. 2008. Municipal solid waste characterizations and management strategies for the Lower Rio Grande Valley, Texas. Waste Manage 28:776-94. https://doi.org/10.1016/j.wasman.2007.04.002.

Dahlén, L., and A. Lagerkvist. 2008. Methods for household waste composition studies. Waste Manage 28(7):1100-12. https://doi.org/10.1016/j.wasman.2007.08.014.

de Oliveira, M. M., A. Lago, and G. P. Dal’Magro. 2021. Food loss and waste in the context of the circular economy: a systematic review. J Clean Prod 294:126284. https://doi.org/10.1016/j.jclepro.2021.126284.

Derqui, B., and A. Agustín. 2016. Estudio piloto para la Medición y Reducción del Desperdicio de Alimentos en Comedores Escolares: Auditoria y Autoevaluación. Technical Report. Catálogo de Publicaciones de la Administración General del Estado. URL: goo.gl/bc6FNX.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada, and C. W. Robledo. 2014. InfoStat versión 2014. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Difang, Z., X. Zhicheng, W. Guoying, H. Nazmul, L. Guoxue, and L. Wenhai. 2020. Insights into characteristics of organic matter during co-biodrying of sewage sludge and kitchen waste under different aeration intensities, Environ Technol Innov 20:101-117. https://doi.org/10.1016/j.eti.2020.101117.

Efrat, E., E. Eyal, and A. Ofira. 2019. Bridging the gap between self-assessments and measured household food waste: A hybrid valuation approach. Waste Manage 95:259-270. https://doi.org/10.1016/j.wasman.2019.06.015.

Engström, R., and A. Carlsson-Kanyama. 2004. 11 service institutions Examples from Sweden. Food Policy 29(3):203-213. https://doi.org/10.1016/j.foodpol.2004.03.004.

Eriksson, M., C. Persson Osowski, C. Malefors, J. Björkman, and E. Eriksson. 2017. Quantification of food waste in public catering services A case study from a Swedish municipality. Waste Manage 61:415-422. https://doi.org/10.1016/j.wasman.2017.01.035.

FAO. 2016. Pérdida y Desperdicio de Alimentos en América Latina y El Caribe: Alianzas e institucionalidad para construir mejores políticas. Boletín 4. Food and Agriculture Organization. URL: fao.org/3/a-i7248s.pdf.

Ganguly, P., S. Sengupta, P. Das, and A. Bhowal. 2020. Valorization of food waste: Extraction of cellulose, lignin and their application in energy use and water treatment. Fuel 280:118581. https://doi.org/10.1016/j.fuel.2020.118581.

Gao, S. M., Y. Huang, L. L. Yang, H. Wang, M. X. Zhao, Z. Y. Xu, Z. Huang, and W. Ruan. 2015. Evaluation the anaerobic digestion performance of solid residual kitchen waste by NaHCO3 buffering. Energy Convers Manage 93:166-174. https://doi.org/10.1016/j.enconman.2015.01.010.

Godoy, M. R., K. R. Kerr, and G. C. Fahey. 2013. Alternative dietary fiber sources in companion animal nutrition. Nutrients 5:3099-3117. https://doi.org/10.3390/nu5083099.

Guerin, E., M. C. Paré, S. Lavoie, and N. Bourgeois. 2018. The importance of characterizing residual household waste at the local level: A case study of Saguenay, Quebec (Canada), Waste Manage 77:341-349. https://doi.org/10.1016/j.wasman.2018.04.019.

Guo, R., G. Li, T. Jiang, F. Schuchardt, T. Chen, Y. Zhao, and Y. Shen. 2012. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour Technol 112:171-178. https://doi.org/10.1016/j.biortech.2012.02.099.

Gustavsson, J., C. Cederberg, U. Sonesson, R. Van Otterdijk, and A. Meybeck. 2011. Global food losses and food waste. FAO, Rome. URL: fao.org/3/i2697e/i2697e.pdf.

HLPE. 2014. Food Losses and Waste in the Context of Sustainable Food Systems. Technical report A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. Rome. URL: goo.gl/1S1eQF.

Hocking, P. M., V. Zaczek, E. K. M. Jones, and M. G. Macleod. 2004. Different concentrations and sources of dietary fibre may improve the welfare of female broiler breeders. Br Poult Sci 45:9-19. https://doi.org/10.1080/00071660410001668806.

Iqbal, H. M. N., G. Kyazze, and T. Keshavarz. 2013. Advances in the valorization of lignocellulosic materials by biotechnology: an overview. Bioresour 8(2):3157-3176. https://doi.org/10.15376/biores.8.2.3157-3176.

Koivula, N., T. Räikkonen, S. Urpilainen, J. Ranta, and K. Hänninen. 2004. Ash in composting of source-separated catering waste. Bioresour Technol 93:201-299. https://doi.org/10.1016/j.biortech.2003.10.025.

Kumar, A., and S. R. Samadder. 2020. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy 197:117253. https://doi.org/10.1016/j.energy.2020.117253.

Kumar, M., L. Ou Yan, and J. G. Lin. 2010. Co-composting of green waste and food waste at low C/N ratio. Waste Management 30:602-609. https://doi.org/10.1016/j.wasman.2009.11.023.

Lebersorger, S., and F. Schneider. 2011. Discussion on the methodology for determining food waste in household waste composition studies. Waste Manage 31(9-10):1924-33. https://doi.org/10.1016/j.wasman.2011.05.023.

Ley 27454. Ley Donal. URL: tinyurl.com/57tfrxnd.

Li, C., B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer, K. P. Vogel, B. A. Simmons, and S. Singh. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharificaiton. Bioresour Technol 101:4900-4906. https://doi.org/10.1016/j.biortech.2009.10.066.

Li, G. Y., Z. Y. Zhang, H. W. Sun, J. Y. Chen, T. C. An, and B. Li. 2013. Pollution profiles, health risk of VOCs and biohazards emitted from municipal solid waste transfer station and elimination by an integrated biological-photocatalytic flow system: A pilot-scale investigation. J Hazard Mater 250:147-154. https://doi.org/10.1016/j.jhazmat.2013.01.059.

Ma, J., L. Zhang, A. Li, J. Li, W. Luo, H. Zhang, G. Wang, and G. Li. 2016. Energy-efficient co-biodrying of dewatered sludge and food waste: Synergistic enhancement and variables investigation. Waste Manage 56:411-42. https://doi.org/10.1016/j.wasman.2016.06.007.

Matassa, S., N. Boon, I. Pikaar, and W. Verstraete. 2016. Microbial protein: future sustainable food supply route with low environmental footprint. Microb Biotechnol 9(5):568-575. https://doi.org/10.1111/1751-7915.12369.

Moreno, A. D., C. González-Fernández, M. Ballesteros, and E. Tomás-Pejó. 2019. Insoluble solids at high concentrations repress yeast’s response against stress and increase intracellular ROS levels. Sci Rep 9:12236. https://doi.org/10.1038/s41598-019-48733-w.

Nakasaki, K., S. Araya, and H. Mimoto. 2013. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting. Bioresour Technol 144:521-528. https://doi.org/10.1016/j.biortech.2013.07.005.

Pandey, R. U., A. Surjan, and M. Kapshe. 2018. Exploring linkages between sustainable consumption and prevailing green practices in reuse and recycling of household waste: Case of Bhopal city in India. J Clean Prod 173:49-59. https://doi.org/10.1016/j.jclepro.2017.03.227.

Papargyropoulou, E., R. Lozano, J. K. Steinberger, N. Wright, and Z. bin Ujang. 2014. The food waste hierarchy as a framework for the management of food surplus and food waste. J Clean Prod 76:106-115. https://doi.org/10.1016/j.jclepro.2014.04.020.

Parfitt, J., M. Barthel, and S. Macnaughton. 2010. Food waste within food supply chains: quantification and potential for change to 2050. Philosophical Transactions of the Royal Society of London B: Biol Sci 365(1554):3065-3081. https://doi.org/10.1098/rstb.2010.0126.

Punjwani, J., R. Krishna, S. Kalpana, and K. K. Gupta. 2011. Application impact of coal fly ash, and water hyacinth on cultivation of tomato. Int J Res Chem Environ 1(1):71-76.

Ramachandra, T., H. Bharath, G. Kulkarni, and S. S. Han. 2018. Municipal solid waste: generation, composition and GHG emissions in Bangalore, India. Renew Sust Energy Reviews 82(1):1122-1136. https://doi.org/10.1016/j.rser.2017.09.085.

Ravikumar, T. N., N. A. Yeledhalli, M. V. Ravi, and K. Narayana Rao. 2008. Physical, physico-chemical and enzyme activities of vermiash compost. Karnataka J Agric Sci 21(12):222-226.

Rynk, R., M. Van de Kamp, G. B. Willson, M. E. Singley, T. L. Richard, J. J. Kolega, and W. F. Brinton. 1992. On-Farm Composting Handbook (NRAES 54). Northeast Regional Agricultural Engineering Service (NRAES). URL: tinyurl.com/yc4xsd65.

Sakurai, K. 2000. HDT17: Método sencillo del análisis de residuos sólidos.

Secondi, L., L. Principato, and T. Laureti. 2015. Household food waste behaviour in EU-27 countries: A multilevel analysis. Food Policy 56:25-40. https://doi.org/10.1016/j.foodpol.2015.07.007.

Skaf, L., P. P. Franzese, R. Capone, and E. Buonocore. 2021. Unfolding hidden environmental impacts of food waste: An assessment for fifteen countries of the world. J Clean Prod 310:127523. https://doi.org/10.1016/j.jclepro.2021.127523.

Soobhany, N. 2018. Preliminary evaluation of pathogenic bacteria loading on organic Municipal Solid Waste compost and vermicompost. J Environ Manage 206:763-767. https://doi.org/10.1016/j.jenvman.2017.11.029.

Soobhany, N. 2018b. Assessing the physicochemical properties and quality parameters during composting of different organic constituents of Municipal Solid Waste. J Environ Chem Eng 6(2):1979-1988. https://doi.org/10.1016/j.jece.2018.02.049.

UN Department of Economic and Social Affairs. 2015. UN Department of Economic and Social Affairs Sustainable development goals: sustainable development knowledge. URL: sustainabledevelopment.un.org.

Vargas, A., B. V. Silva, M. R. Rocha, and F. Pelisser. 2014. Precast slabs using recyclable packaging as flooring support elements. J Clean Prod 66:92-100. https://doi.org/10.1016/j.jclepro.2013.10.059.

Walker, L., W. Charles, and R. Cord-Ruwisch. 2009. Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes. Bioresour Technol 100:3799-3807. https://doi.org/10.1016/j.biortech.2009.02.015.

Wang, H., J. Xu, and L. Sheng. 2019. Study on the comprehensive utilization of city kitchen waste as a resource in China. Energy 173:263-277. https://doi.org/10.1016/j.energy.2019.02.081.

Wilkie, A. C., R. E. Graunke, and C. Cornejo. 2015. Food Waste Auditing at Three Florida Schools. Sustainability 7(2):1370-1387. https://doi.org/10.3390/su7021370.

Wong, J. W. C., S. O. Fung, and A. Selvam. 2009. Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting. Bioresour Technol 100:3321-3324. https://doi.org/10.1016/j.biortech.2009.01.063.

Yu, Q., and H. Li. 2020. Moderate separation of household kitchen waste towards global optimization of municipal solid waste management. J Clean Prod 277:123330. https://doi.org/10.1016/j.jclepro.2020.123330.

Yuan, J., D. Zhang, Y. Li, J. Li, W. Luo, H. Zhang, G. Wang, and G. Li. 2018. Effects of the aeration pattern, aeration rate, and turning frequency on municipal solid waste biodrying performance. J Environ Manage 218:416-424. https://doi.org/10.1016/j.jenvman.2018.04.089.

Zeng, Y., K. Trauth, R. Peyton, and S. Banerji. 2005. Characterization of solid waste disposed at Columbia Sanitary Landfill in Missouri. Waste management and research: the journal of the International Solid Wastes and Public Cleansing Association (ISWA) 23:62-71. https://doi.org/10.1177/0734242X05050995.

Zhang, Q., J. Chang, T. Wang, and Y. Xu. 2007. Review of biomass pyrolysis oil properties and upgrading research. Energy Conver Manage 48(1):87-92. https://doi.org/10.1016/j.enconman.2006.05.010.

Zhou, C., W. Fang, W. Xu, A. Cao, and R. Wang. 2014. Characteristics and the recovery potential of plastic wastes obtained from landfill mining. J Clean Prod 80:80-86. https://doi.org/10.1016/j.jclepro.2014.05.083.

Zhou, X., J. Yang, S. Xu, J. Wang, Q. Zhou, Y. Li, and X. Tong. 2020. Rapid in situ composting of household food waste. Process Saf Environ Protection 141:259-266. https://doi.org/10.1016/j.psep.2020.05.039.

Diagnosis and strategies for kitchen and food waste management in an institutional canteen in Buenos Aires, Argentina
Publicado
2022-06-26
Sección
Comunicaciones breves