Distribución y conservación de las papayas de altura del noroeste argentino bajo escenarios de cambio global

Autores/as

  • M. Manuela Urtasun Banco de Germoplasma de Especies Nativas, Instituto de Ecología y Ambiente Humano, Facultad de Ciencias Naturales, Universidad Nacional de Salta-CONICET. Salta, Argentina
  • Eugenia M. Giamminola Banco de Germoplasma de Especies Nativas, Instituto de Ecología y Ambiente Humano, Facultad de Ciencias Naturales, Universidad Nacional de Salta-CONICET. Salta, Argentina
  • Carola Y. Lamas Banco de Germoplasma de Especies Nativas, Instituto de Ecología y Ambiente Humano, Facultad de Ciencias Naturales, Universidad Nacional de Salta-CONICET. Salta, Argentina
  • Carol Caudle Baskin Department of Biology, University of Kentucky. Lexington, USA. Department of Plant and Soil Sciences, University of Kentucky. Lexington, USA
  • Johanna Croce Instituto de Bio y Geociencias del NOA (IBIGEO), Universidad Nacional de Salta-CONICET. Salta, Argentina
  • Ramiro N. Curti Laboratorio de Investigaciones Botánicas (LABIBO), Facultad de Ciencias Naturales, Sede Regional Sur, Universidad Nacional de Salta-CONICET. Salta, Argentina
  • Marta L. de Viana Banco de Germoplasma de Especies Nativas, Instituto de Ecología y Ambiente Humano, Facultad de Ciencias Naturales, Universidad Nacional de Salta. Salta, Argentina

DOI:

https://doi.org/10.25260/EA.22.32.2.0.1844

Palabras clave:

Vasconcellea quercifolia, V. glandulosa, parientes silvestres, cambio climático, cambios en los usos del suelo, Maxent, conservación ex situ

Resumen

Las especies silvestres parientes de los cultivos son una fuente de genes para mejorar la tolerancia de éstos a estreses bióticos y abióticos. Vasconcellea quercifolia y V. glandulosa, parientes silvestres de la papaya (Carica papaya), se encuentran en el límite más austral de la distribución del género y presentan características relacionadas con la tolerancia a la estacionalidad de la temperatura y precipitación. La persistencia de las dos especies está en riesgo debido al cambio climático y al cambio en los usos del suelo. El objetivo de este trabajo fue identificar áreas prioritarias para la conservación ex situ, evaluando el efecto del cambio global sobre la distribución potencial de ambas especies en el noroeste de la Argentina. La distribución potencial se modeló a partir de datos de ocurrencia y de cinco variables bioclimáticas no correlacionadas. El efecto del cambio global sobre los rangos de distribución se evaluó en dos escenarios de cambio climático para el año 2050 y considerando el cambio en los usos del suelo. Las prioridades de conservación fueron identificadas mediante un enfoque integrado de estrategias de conservación in situ y ex situ. La distribución de V. quercifolia fue más amplia que la de V. glandulosa. La pérdida de hábitat disponible para V. quercifolia ocurrió principalmente por el cambio en los usos del suelo, mientras que para V. glandulosa ocurriría por el efecto del cambio climático. Además, el efecto sinérgico entre ambos factores sería mayor en V. quercifolia. Ambas Vasconcelleas son especies prioritarias para colecta de germoplasma. Se logró identificar áreas prioritarias de conservación para ambas especies.

Citas

Aguirre-Gutiérrez, J., L. G. Carvalheiro, C. Polce, E.E. van Loon, N. Raes, M. Reemer, and J. C. Biesmeijer. 2013. Fit-for-purpose: Species distribution model performance depends on evaluation criteria-Dutch hoverflies as a case study. Plos ONE 8:e63708. https://doi.org/10.1371/journal.pone.0063708.

Barros, V. R., J. A. Boninsegna, I. A. Camilloni, M. Chidiak, G. O. Magrín, and M. Rusticucci. 2015. Climate change in Argentina: trends, projections, impacts and adaptation. Climate Change 6:151-169. https://doi.org/10.1002/wcc.316.

Bianchi, A. R., and S. A. C. Cravero. 2010. Atlas climático digital de la República Argentina. First edit. Instituto Nacional de Tecnología Agropecuaria, Salta, Argentina.

Broennimann, O., W. Thuiller, G. Hughes, G. F. Midgley, J. M. R. Alkemade, and A. Guisan. 2006. Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Global Change Biology 12:1079-1093. https://doi.org/10.1111/j.1365-2486.2006.01157.x.

Brown, J. L. 2014. SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution 5:694-700. https://doi.org/10.1111/2041-210X.12200.

Carrasco, B., P. Ávila, J. Pérez-Díaz, P. Muñoz, R. García, B. Lavandero, A. Zurita-Silva, J. B. Retamales, and P. Caligari. 2009. Genetic structure of highland papayas (Vasconcellea pubescens (Lenné et C. Koch) Badillo) cultivated along a geographic gradient in Chile as revealed by Inter Simple Sequence Repeats (ISSR). Genetic Resouces and Crop Evolution 56:331-337. https://doi.org/10.1007/s10722-008-9367-1.

Coppens d’Eeckenbrugge, G., R. Drew, T. Kyndt, and X. Scheldeman. 2014. Vasconcellea for papaya improvement. Pp. 433 in R. Ming and P. H. Moore (eds.). Genetics and Genomics of Papaya. First. Springer, New York, USA. https://doi.org/10.1007/978-1-4614-8087-7_4.

Curti, R. N., J. Sajama, and P. Ortega-Baes. 2017. Setting conservation priorities for Argentina’s pseudocereal crop wild relatives. Biological Conservation 209:349-355. https://doi.org/10.1016/j.biocon.2017.03.008.

Drew, R., S. Ashmore, S. Somsri, N. Noor, T. Thi Hoa, O. Damasco, and R. Rao. 2007. Advanced technologies for germplasm conservation of tropical fruit species. Acta Horticulturae 760:91-98. https://doi.org/10.17660/ActaHortic.2007.760.10.

Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L.G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. Overton, A. T. Peterson, S. J. Phillips, K. S. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberón, S. Williams, M. S. Wisz, and N. E. Zimmermann. 2006a. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x.

Elith, J. 2006b. Quantitative methods for modeling species habitat: comparative performance and an application to Australian plants. Pp. 39-58 in S. Ferson and M. Burgman (eds.). Quantitative methods for conservation biology. Springer Science and Business Media, New York, USA. https://doi.org/10.1007/0-387-22648-6_4.

FAO. 2020a. The state of food security and nutrition in the world. Rome, Italy.

FAO. 2020b. Global forest resources assessment 2020 - key findings. Rome, Italy.

Folharini, Z. F., C. R. Orlandi, M. C. Martini, F. Bruxel, T. Altmayer, D. T. Brietzke, T. E. Gonçalves, J. Finatto, E. M. Ethur, N. F. de Moura, L. Hoehne, and E. M. de Freitas. 2019. Nutritional characterization of Vasconcellea quercifolia a.St-hil.: Potential for the development of functional food. Food Science and Technology 39:432-438. https://doi.org/10.1590/fst.18018.

GBIF.org (5 May 2020) GBIF V. quercifolia Occurrence Download. https://doi.org/10.15468/dl.qz6uyt.

GBIF.org (5 May 2020) GBIF V. glandulosa Occurrence Download. https://doi.org/10.15468/dl.pk5xs4.

Giamminola, E. M., M. M. Urtasun, C. Y. Lamas, and M. L. de Viana. 2020. Will global change modify the distribution of the Anadenanthera colubrina (Fabales: Fabaceae) plant, a key species in dry tropical forest? Revista de Biología Tropical 68:517-527. https://doi.org/10.15517/rbt.v68i2.38610.

Leake, A., E. O. López, and M. C. Leake. 2016. La deforestación del Chaco Salteño. First. Fundación Refugio, Salta, Argentina.

Maciel-Mata, C. A., N. Manríquez-Morán, P. Octavio-Aguilar, and G. Sánchez-Rojas. 2015. El área de distribución de las especies: revisión del concepto. Acta Universitaria 25:3-19. https://doi.org/10.15174/au.2015.690.

Malizia, L., S. Pacheco, C. Blundo, and A. D. Brown. 2012. Caracterización altitudinal, uso y conservación de las Yungas Subtropicales de Argentina. Ecosistemas 21:53-73.

Marinoni, L., M. Parra-Quijano, M. Zabala, and F. Pensiero. 2015. Evaluation and improvement of the ecogeographical representativeness of a collection of the genus Trichloris in Argentina. Genetic Resouces and Crop Evolution 62:593-604. https://doi.org/10.1007/s10722-014-0184-4.

Mora, C., D. Spirandelli, E. C. Franklin, J. Lynham, M. B. Kantar, W. Miles, C. Z. Smith, K. Freel, J. Moy, L. V. Louis, E. W. Barba, K. Bettinger, A. G. Frazier, J. F. Colburn IX, N. Hanasaki, E. Hawkins, Y. Hirabayashi, W. Knorr, C. M. Little, K. Emanuel, J. Sheffield, J. A. Patz, and C. L. Hunter. 2018. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nature Climate Change 8(12):1062-1071. https://doi.org/10.1038/s41558-018-0315-6.

Parra-Quijano, M., J. M. Iriondo, and E. Torres. 2012. Ecogeographical land characterization maps as a tool for assessing plant adaptation and their implications in agrobiodiversity studies. Genetic Resouces and Crop Evolution 59:205-217. https://doi.org/10.1007/s10722-011-9676-7.

Parra-Quijano, M., E. Torres Lamas, J. M. Iriondo Alegría, and F. López. 2016. CAPFITOGEN - Programa para el fortalecimiento de las capacidades en programas nacionales de recursos fitogenéticos de América Latina. FAO.

Phillips, S. J., R. P. Anderson, and R. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model 190:231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

Qin, A., B. Liu, Q. Guo, R. W. Bussmann, F. Ma, Z. Jian, G. Xu, and S. Pei. 2017. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch, an extremely endangered conifer from southwestern China. Global Ecology and Conservation 10:139-146. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

Radosavljevic, A., and R. P. Anderson. 2014. Making better Maxent models of species distributions: complexity, overfitting and evaluation. Journal of Biogeography 41:629-643. https://doi.org/10.1016/j.ecolmodel.2005.03.026.

Ramírez-Villegas, J., C. Khoury, A. Jarvis, D. G. Debouck, and L. Guarino. 2010. A gap analysis methodology for collecting crop genepools: a case study with Phaseolus beans. PloS ONE 5(10):e13497. https://doi.org/10.1371/journal.pone.0013497.

Scheepens, J. F., Y. Deng, and O. Bossdorf. 2018. Phenotypic plasticity in response to temperature fluctuations is genetically variable, and relates to climatic variability of origin, in Arabidopsis thaliana. AoB PLANTS 10(4):1-12. https://doi.org/10.1093/aobpla/ply043.

Scheldeman, X., L. Willemen, G. Coppens D’Eeckenbrugge, E. Romeijn-Peeters, M. T. Restrepo, J. Romero Motoche, D. Jiménez, M. Lobo, C. I. Medina, C. Reyes, D. Rodríguez, J. A. Ocampo, P. Van Damme, and P. Goetgebeur. 2007. Distribution, diversity and environmental adaptation of highland papayas (Vasconcellea spp.) in tropical and subtropical America. Biodiversity and Conservation 16:1867-1884. https://doi.org/10.1007/s10531-006-9086-x.

Siar, S. V., G. A. Beligan, A. J. C. Sajise, V. N. Villegas, and R. A. Drew. 2011. Papaya ringspot virus resistance in Carica papaya via introgression from Vasconcellea quercifolia. Euphytica 181:159-168. https://doi.org/10.1007/s10681-011-0388-z.

Torres, M. J., S. A. Trejo, M. I. Martin, C. L. Natalucci, F. Avilés, and L. M. López. 2010. Purification and characterization of a cysteine endopeptidase from Vasconcellea quercifolia A. St.-Hil. latex displaying high substrate specificity. Journal of agricultural and food chemistry 58:11027-11035. https://doi.org/10.1021/jf904295x.

Ulloa Ulloa, C., P. Acevedo-Rodríguez, S. Beck, M. J. Belgrano, R. Bernal, P. E. Berry, L. Brako, M. Celis, G. Davidse, R. C. Forzza, S. R. Gradstein, O. Hokche, B. León, S. León-Yánez, R. E. Magill, D. A. Neill, M. Nee, P. H. Raven, H. Stimmel, M. T. Strong, J. L. Villaseñor, J. L. Zarucchi, F. O. Zuloaga, and P. M. Jørgensen. An integrated assessment of the vascular plant species of the Americas. Science 358(6370):1614-1617. https://doi.org/10.1126/science.aao0398.

Valladares, F., S. Matesanz, F. Guilhaumon, M. B. Araújo, L. Balaguer, M. Benito-Garzón, W. Cornwell, E. Gianoli, M. van Kleunen, D. E. Naya, A. B. Nicotra, H. Poorter, and M. A. Zavala. 2014. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters 17:1351-1364. https://doi.org/10.1111/ele.12348.

Vincent, H., J. Wiersema, S. Kell, H. Fielder, S. Dobbie, N. P. Castañeda-Álvarez, L. Guarino, R. Eastwood, B. León, and N. Maxted. 2013. A prioritized crop wild relative inventory to help underpin global food security. Biological Conservation 167:265-275. https://doi.org/10.1016/j.biocon.2013.08.011.

Yang, X., S. P. S. Kushwaha, S. Saran, J. Xu, and P. S. Roy. 2013. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering 51:83-87. https://doi.org/10.1016/j.ecoleng.2012.12.004.

Species distribution modeling and conservation assessment of the northwestern Argentinian highland papayas under global change scenarios

Descargas

Archivos adicionales

Publicado

2022-05-11 — Actualizado el 2022-11-15

Versiones

Cómo citar

Urtasun, M. M., Giamminola, E. M., Lamas, C. Y., Caudle Baskin, C., Croce, J., Curti, R. N., & de Viana, M. L. (2022). Distribución y conservación de las papayas de altura del noroeste argentino bajo escenarios de cambio global. Ecología Austral, 32(2), 331–342. https://doi.org/10.25260/EA.22.32.2.0.1844 (Original work published 11 de mayo de 2022)