Evaluación ambiental de las riberas del lago Nahuel Huapi y propuesta de un índice de calidad de costas

Autores/as

  • Nicolás Martyniuk Laboratorio de Limnología, INIBIOMA (CONICET-UN del Comahue). Bariloche, Río Negro, Argentina https://orcid.org/0000-0002-2423-7040
  • Florencia Cuassolo Laboratorio de Limnología, INIBIOMA (CONICET-UN del Comahue). Bariloche, Río Negro, Argentina|
  • Marcela Bastidas Navarro Laboratorio de Limnología, INIBIOMA (CONICET-UN del Comahue). Bariloche, Río Negro, Argentina https://orcid.org/0000-0002-6558-0451
  • Verónica Díaz Villanueva Laboratorio de Limnología, INIBIOMA (CONICET-UN del Comahue). Bariloche, Río Negro, Argentina
  • Esteban Balseiro Laboratorio de Limnología, INIBIOMA (CONICET-UN del Comahue). Bariloche, Río Negro, Argentina https://orcid.org/0000-0002-5052-0587
  • Beatriz Modenutti Laboratorio de Limnología, INIBIOMA (CONICET-UN del Comahue). Bariloche, Río Negro, Argentina https://orcid.org/0000-0002-8683-5679

DOI:

https://doi.org/10.25260/EA.22.32.3.0.1908

Palabras clave:

nutrientes, turismo, urbanización, servicios ecosistemicos

Resumen

Los lagos proveen diferentes servicios ecosistémicos, incluyendo aquellos relacionados con los asentamientos urbanos, el turismo y la recreación. Estas actividades alteran de distintas maneras las costas y las zonas litorales de los lagos. El lago Nahuel Huapi, localizado en el norte de la Patagonia argentina, es profundo, de origen glaciar y en sus costas posee desarrollos urbanos y turísticos. El objetivo del presente trabajo es construir un índice de calidad de costas en base a parámetros paisajísticos y de infraestructura. Para ello se relevaron 29 sitios distribuidos a lo largo de la costa del lago Nahuel Huapi, seleccionados a partir del análisis de imágenes satelitales, en los que se determinaron parámetros limnológicos en zona de ribera. En cada sitio se registró la temperatura, el oxígeno disuelto y la conductividad, y se tomaron, además, muestras para determinar nutrientes (fósforo, nitrógeno y carbono orgánico) y de biomasa perifítica de productores primarios (concentración de clorofila sobre sustrato rocoso). Por otra parte, en cada sitio se relevaron características particulares de la zona costera (presencia de muelles, construcciones, caminos, parquizaciones y emprendimientos turísticos), y también la vegetación riparia y la presencia de plásticos y vidrios en el sedimento. Con esta información se desarrolló un índice que consta de cinco componentes: 1) construcción en línea de costa, 2) construcción en terrenos costeros, 3) recreación, 4) uso y modificación de la tierra, y 5) vegetación costera. El índice propuesto presentó un buen ajuste con los parámetros limnológicos analizados (no incluidos en el índice), por lo cual consideramos que el índice de calidad de costas posee una aplicación amplia para los lagos glaciares patagónicos. Basándonos en este índice de calidad de costa, el lago Nahuel Huapi presenta mayormente costas prístinas, sólo un 2% está muy alterado y un 17%, alterado.

Citas

Albariño, R. J., and E. G. Balseiro. 2002. Leaf litter breakdown in Patagonian streams: native versus exotic trees and the effect of invertebrate size. Aquatic Conservation: Marine and Freshwater Ecosystems 12:181-192. https://doi.org/10.1002/aqc.511.

APHA. 2005. Standard methods for the examination of water and wastewater. American Public Health Association, AWWA, Washington D.C., USA.

Baffico, G. D. 2001. Variations in the periphytic community structure and dynamics of Lake Nahuel Huapi (Patagonia, Argentina). Hydrobiologia 455:79-85. https://doi.org/10.1023/A:1011991402794.

Baigún, C., and M. C. Marinone. 1995. Cold-temperate lakes of South America: do they fit Northern hemisphere models? Archiv für Hydrobiologie 135:23-51. https://doi.org/10.1127/archiv-hydrobiol/135/1995/23.

Barbour, M., J. Gerritsen, B. Snyder, and J. Stribling. 1999. Rapid bioassessment protocols for use in streams and river: Periphyton, Benthic Macroinvertebrates and fish, EPA.

Barriga, J., M. Battini, M. García-Asorey, C. Carrea, P. Macchi, and V. Cussac. 2012. Intraspecific variation in diet, growth, and morphology of landlocked Galaxias maculatus during its larval period: the role of food availability and predation risk. Hydrobiologia 679:27-41. https://doi.org/10.1007/s10750-011-0849-3.

Bastidas Navarro, M., L. Schenone, N. Martyniuk, E. Vega, B. Modenutti, and E. Balseiro. 2021. Predicting dissolved organic matter lability and carbon accumulation in temperate freshwater ecosystems. Ecosystems 25(4):795-811. https://doi.org/10.1007/s10021-021-00682-0.

Beeton, A. M. 2002. Large freshwater lakes: present state, trends, and future. Environmental Conservation 29:21-38. https://doi.org/10.1017/S0376892902000036.

Beeton, A. M., and W. T. Edmondson. 1972. The eutrophication problem. Journal of the Fisheries Board of Canada 29:673-682. https://doi.org/10.1139/f72-113.

Biedma, J. M. 1987. Crónica histórica del lago Nahuel Huapi. Editorial Del Nuevo Extremo.

Biggs, B. J. E., and M. E. Close. 1989. Periphyton biomass dynamics in gravel bed rivers: the relative effects of flow and nutrients. Freshwater Biology 22:209-231. https://doi.org/10.1111/j.1365-2427.1989.tb01096.x.

Borja, C., M. Florin Beltran, and A. Camacho. 2012. Lagos y humedales en la evaluación de los ecosistemas del milenio en España.

Brezonik, P. L., R. W. Bouchard Jr., J. C. Finlay, C. G. Griffin, L. G. Olmanson, J. P. Anderson, W. A. Arnold, and R. Hozalski. 2019. Color, chlorophyll a and suspended solids effects on Secchi depth in lakes: implications for trophic state assessment. Ecological Applications:e01871. https://doi.org/10.1002/eap.1871.

Brönmark, C., and L.-A. Hansson. 2017. The biology of lakes and ponds. Third Edition. Oxford University Press. https://doi.org/10.1093/oso/9780198713593.001.0001.

Burns, E. E., and A. B. Boxall. 2018. Microplastics in the aquatic environment: Evidence for or against adverse impacts and major knowledge gaps. Environmental Toxicology Chemistry 37:2776-2796. https://doi.org/10.1002/etc.4268.

Callaway, R. M., R. W. Brooker, P. Choler, Z. Kikvidze, C. J. Lortie, R. Michalet, L. Paolini, F. I. Pugnaire, B. Newingham, and E. T. Aschehoug. 2002. Positive interactions among alpine plants increase with stress. Nature 417:844-848. https://doi.org/10.1038/nature00812.

Callieri, C., R. Bertoni, M. Contesini, and F. Bertoni. 2014. Lake level fluctuations boost toxic cyanobacterial “oligotrophic blooms”. PLoS ONE 9:e109526. https://doi.org/10.1371/journal.pone.0109526.

Callieri, C., B. E. Modenutti, C. Queimaliños, R. Bertoni, and E. G. Balseiro. 2007. Production and biomass of picophytoplankton and larger autotrophs in Andean ultraoligotrophic lakes: Differences in light harvesting efficiency in deep layers. Aquatic Ecology 41:511-523. https://doi.org/10.1007/s10452-007-9125-z.

Carlson, R. E. 1977. A trophic state index for lakes. Limnology and Oceanography 22:361-369. https://doi.org/10.4319/lo.1977.22.2.0361.

Cellini, J. M., G. Martínez Pastur, R. M. Soler Esteban, M. D. Barrera, and M. V. Lencinas. 2013. Retención variable en bosques de Nothofagus pumilio (Poepp. and Endl.) Krasser en Patagonia Sur: estructura forestal, estabilidad estructural y regeneración. Revista Forestal Yviraretá 20:40-47.

Congedo, L. 2021. Semi-Automatic Classification Plugin: A Python tool for the download and processing of remote sensing images in QGIS. Journal of Open Source Software 6:3172. https://doi.org/10.21105/joss.03172.

Cooper, S. D., P. S. Lake, S. Sabater, J. M. Melack, and J. L. Sabo. 2013. The effects of land use changes on streams and rivers in mediterranean climates. Hydrobiologia 719:383-425. https://doi.org/10.1007/s10750-012-1333-4.

Correa, N. R. 2009. Evolución de las Líneas de Ribera y del Camino Público por Efecto de los Cambios Regionales. Pp. 1-20 en Cuarto Simposio Regional sobre Hidráulica de Ríos. Ríos, Salta, Argentina.

Cuassolo, F., E. G. Balseiro, and B. E. Modenutti. 2012. Alien vs. native plants in a Patagonian wetland: elemental ratios and ecosystem stoichiometric impacts. Biological Invasions 14:179-189. https://doi.org/10.1007/s10530-011-9995-9.

Cuassolo, F., and V. Díaz Villanueva. 2019. Exóticas en humedales: Análisis de las comunidades vegetales de mallines naturales y urbanos en la ciudad de Bariloche. Ecología Austral 29:405-415. https://doi.org/10.25260/EA.19.29.3.0.853.

Cuassolo, F., V. Díaz Villanueva, and B. Modenutti. 2020. Litter decomposition of the invasive Potentilla anserina in an invaded and non-invaded freshwater environment of North Patagonia. Biological Invasions 22:1055-1065. https://doi.org/10.1007/s10530-019-02155-x.

Cuassolo, F., V. Díaz Villanueva, and B. Modenutti. 2021. Low-decomposition rates of riparian litter in a North Patagonian ultraoligotrophic lake. Limnologica 90:125906. https://doi.org/10.1016/j.limno.2021.125906.

del Tanago, G., and D. G. de Jalón. 2004. Hierarchical Classification of Rivers: A proposal for eco-geomorphic characterization of Spanish rivers within the European Water Frame Directive. Fifth International Symposium on Ecohydraulics. Aquatic Habitats: Analysis and restoration.

Díaz, M. M., F. L. Pedrozo, and P. Temporetti. 1998. Phytoplankton of two Araucanian lakes of differing trophic status (Argentina). Hydrobiologia 369/370:45-57. https://doi.org/10.1023/A:1017046302728.

Dokulil, M. T. 2014. Environmental impacts of tourism on lakes. Pp. 81-88 in Eutrophication: causes, consequences and control. Springer. https://doi.org/10.1007/978-94-007-7814-6_7.

Donnelly, A., M. Jones, T. O’Mahony, and G. Byrne. 2007. Selecting environmental indicator for use in strategic environmental assessment. Environmental Impact Assessment Review 27:161-175. https://doi.org/10.1016/j.eiar.2006.10.006.

Edmondson, W. T., G. Anderson, and D. R. Peterson. 1956. Artificial Eutrophication of Lake Washington 1. Limnology and Oceanography 1:47-53. https://doi.org/10.4319/lo.1956.1.1.0047.

Elliott, J. A. 2012. Predicting the impact of changing nutrient load and temperature on the phytoplankton of England’s largest lake, Windermere. Freshwater Biology 57:400-413. https://doi.org/10.1111/j.1365-2427.2011.02717.x.

Ezcurra, C., and C. Brion. 2005. Plantas del Nahuel Huapi: Catálogo de la Flora Vascular del Parque Nacional Nahuel Huapi, Argentina. Universidad Nacional del Comahue. Red Latinoamericana de Botánica.

Free, C. M., O. P. Jensen, S. A. Mason, M. Eriksen, N. J. Williamson, and B. Boldgiv. 2014. High-levels of microplastic pollution in a large, remote, mountain lake. Marine Pollution Bulletin 85:156-163. https://doi.org/10.1016/j.marpolbul.2014.06.001.

Furgała-Selezniow, G., M. Jankun-Woźnicka, M. Kruk, and A. A. Omelan. 2021. Land Use and Land Cover Pattern as a Measure of Tourism Impact on a Lakeshore Zone. Land 10. https://doi.org/10.3390/land10080787.

Gómez, N., and J. Cochero. 2013. Un índice para evaluar la calidad del hábitat en la Franja Costera Sur del Río de la Plata y su vinculación con otros indicadores ambientales. Ecología Austral 23:018-026. https://doi.org/10.25260/EA.13.23.1.0.1188.

Graham, A. A., D. J. McCaughan, and F. S. McKee. 1988. Measurement of surface area of stones. Hydrobiologia 157:85-87. https://doi.org/10.1007/BF00008813.

Haines-Young, R. a. M. B. P. 2018. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. https://doi.org/10.3897/oneeco.3.e27108.

Hayden, B., C. Harrod, S. M. Thomas, A. P. Eloranta, J. P. Myllykangas, A. Siwertsson, K. Praebel, R. Knudsen, P. A. Amundsen, and K. K. Kahilainen. 2019. From clear lakes to murky waters - tracing the functional response of high-latitude lake communities to concurrent 'greening' and 'browning'. Ecology Letters 22(5):807-816. https://doi.org/10.1111/ele.13238.

Hengstmann, E., E. Weil, P. C. Wallbott, M. Tamminga, and E. K. Fischer. 2021. Microplastics in lakeshore and lakebed sediments–External influences and temporal and spatial variabilities of concentrations. Environmental Research 197:111141. https://doi.org/10.1016/j.envres.2021.111141.

Iriondo, M. H. 1989. Quaternary lakes of Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 70:81-88. https://doi.org/10.1016/0031-0182(89)90081-3.

Karr, J. R. 1999. Defining and measuring river health. Freshwater Biology 41:221-234. https://doi.org/10.1046/j.1365-2427.1999.00427.x.

Kaufmann, P. R., P. Levine, D. V. Peck, E. G. Robison, and C. Seeliger. 1999. Quantifying physical habitat in wadeable streams. EPA/620/R-99/003. U.S. Environmental Protection Agency, Washington, D.C.

Kritzberg, E. S. 2017. Centennial-long trends of lake browning show major effect of afforestation. Limnology and Oceanography Letters 2:105-112. https://doi.org/10.1002/lol2.10041.

Kutschker, A., C. Brand, and M. L. Miserendino. 2009. Quality assessment of riparian corridors in streams of northwest Chubut affected by different land use. Ecologia Austral 19:019-034.

Lampert, W., and U. Sommer. 2007. Limnoecology: the ecology of lakes and streams. Oxford University Press, USA.

Lehel, J., and S. Murphy. 2021. Microplastics in the Food Chain: Food Safety and Environmental Aspects. Reviews of Environmental Contamination Toxicology 259:1-49. https://doi.org/10.1007/398_2021_77.

Maddock, I. 1999. The importance of physical habitat assessment for evaluating river health. Freshwater Biology 41:373-391. https://doi.org/10.1046/j.1365-2427.1999.00437.x.

Mao, D., and K. A. Cherkauer. 2009. Impacts of land-use change on hydrologic responses in the Great Lakes region. Journal of Hydrology 374:71-82. https://doi.org/10.1016/j.jhydrol.2009.06.016

Markert, B., F. Pedrozo, W. Geller, K. Friese, S. Korhammer, G. Baffico, M. Díaz, and S. Wolfl. 1997. A contribution to the study of the heavy-metal and nutritional element status of some lakes in the southern Andes of Patagonia (Argentina). Science of the Total Environment 206:1-15. https://doi.org/10.1016/S0048-9697(97)00218-0.

Martyniuk, N. A., C. L. Morales, and M. A. Aizen. 2014. Invasive conifers reduce seed set of a native Andean cedar through heterospecific pollination competition. Biological Invasions 17:1055-1067. https://doi.org/10.1007/s10530-014-0775-1.

Matossian, B. 2012. Modelos de desarrollo, poblamiento y frontera El caso del Parque Nacional Nahuel Huapi. Estudios Sociales Contemporáneos.

Miserendino, M. L., and C. I. Masi. 2010. The effects of land use on environmental features and functional organization of macroinvertebrate communities in Patagonian low order streams. Ecological Indicators 10:311-319. https://doi.org/10.1016/j.ecolind.2009.06.008.

Modenutti, B. E., E. G. Balseiro, M. Bastidas Navarro, C. Laspoumaderes, M. S. Souza, and F. Cuassolo. 2013a. Environmental changes affecting light climate in oligotrophic mountain lakes: The deep chlorophyll maxima as a sensitive variable. Aquatic Sciences 75:361-371. https://doi.org/10.1007/s00027-012-0282-3.

Modenutti, B. E., E. G. Balseiro, J. J. Elser, M. Bastidas Navarro, F. Cuassolo, C. Laspoumaderes, M. S. Souza, and V. Díaz Villanueva. 2013b. Effect of volcanic eruption on nutrients, light, and phytoplankton in oligotrophic lakes. Limnology and Oceanography 58:1165-1175. https://doi.org/10.4319/lo.2013.58.4.1165.

Morris, D. P., H. Zagarese, C. E. Williamson, E. G. Balseiro, B. R. Hargreaves, B. E. Modenutti, R. Moeller, and C. Queimaliños. 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnology and Oceanography 40:1381-1391. https://doi.org/10.4319/lo.1995.40.8.1381.

Moss, B. R. 2009. Ecology of fresh waters: man and medium, past to future. John Wiley and Sons.

Munné, A., N. Prat, C. Solá, N. Bonada, and M. Rieradevall. 2003. A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquatic Conservation: Marine and Freshwater Ecosystems 13:147-163. https://doi.org/10.1002/aqc.529.

Murphy, G. E., and T. N. Romanuk. 2014. A meta‐analysis of declines in local species richness from human disturbances. Ecology and Evolution 4:91-103. https://doi.org/10.1002/ece3.909.

Neiff, J. J. 1973. Contribución al conocimiento de la distribución y biomasa de hidrófitos en el lago Mascardi (Río Negro, Argentina). Revista de la Asociación de Ciencias Naturales del Litoral 4:129-160. https://doi.org/10.14409/natura.v1i4.3266.

Newbold, T., L. N. Hudson, S. L. Hill, S. Contu, I. Lysenko, R. A. Senior, L. Börger, D. J. Bennett, A. Choimes, and B. Collen. 2015. Global effects of land use on local terrestrial biodiversity. Nature 520:45-50. https://doi.org/10.1038/nature14324.

Nusch, E. A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 14:14-36.

Paruelo, J. M., A. Beltran, E. Jobbágy, O. Sala, and R. Golluscio. 1998. The climate of Patagonia: general patterns and controls on biotic processes. Ecología Austral 8:85-101.

Pedrozo, F., S. Chillrud, P. Temporetti, and M. Díaz. 1993. Chemical composition and nutrient limitation in rivers and lakes of northern Patagonian Andes (39.5º-42º S; 71º W) (Rep. Argentina). Verhandlungen der Internationalen Vereinigung Limnologie 25:205-214. https://doi.org/10.1080/03680770.1992.11900093.

Quirós, R. 1988. Relationship between air temperature, depth, nutrient and chlorophyll in 103 Argentinian lakes. Verhandlungen Internationale Vereinigung Limnologie 23:647-658.

Quirós, R. 1997. Classification and state of the environment of the Argentinean lakes. Pages 29-50 in Study report for the lake environment conservation in developing countries: Argentina. In ILEC Workshop on Better Management of the Lakes of Argentina (ed.).

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

Raab, D., and S. E. Bayley. 2012. A vegetation-based Index of Biotic Integrity to assess marsh reclamation success in the Alberta oil sands, Canada. Ecological Indicators 15:43-51. https://doi.org/10.1016/j.ecolind.2011.09.025.

Raven, P., N. Holmes, F. Dawson, P. Fox, M. Everard, I. Fozzard, and K. Rouen. 1998. River habitat quality. Environment Agency: Bristol.

Reissig, M., C. Queimaliños, B. Modenutti, and E. Balseiro. 2015. Prey C:P ratio and phosphorus recycling by a planktivorous fish: advantages of fish selection towards pelagic cladocerans. Ecology of Freshwater Fish 24:214-224. https://doi.org/10.1111/eff.12136.

Rizzo, A., R. Daga, M. Arcagni, S. Pérez Catán, D. Bubach, R. Sánchez, S. Ribeiro Guevara, and M. A. Arribére. 2010. Concentraciones de metales pesados en distintos compartimentos de lagos andinos de Patagonia Norte. Ecología Austral 20:155-171.

Romanelli, A., and H. E. Massone. 2016. Desarrollo de indicadores ambientales e índice de calidad de lagos someros pampeanos de Argentina con alta intervención antrópica. Tecnología y Ciencias del Agua 7:123-137.

Sarasola, M. M., V. E. Rusch, T. M. Schlichter, and C. M. Ghersa. 2006. Invasión de coníferas forestales en áreas de estepa y bosques de ciprés de la cordillera en la Región Andino Patagónica. Ecología Austral 16:143-156.

Schallenberg, M., M. D. de Winton, P. Verburg, D. J. Kelly, K. D. Hamill, and D. P. Hamilton. 2013. Ecosystem services of lakes. Ecosystem services in New Zealand: conditions and trends. Manaaki Whenua Press, Lincoln. Pp. 203-225.

Schiller, A., C. T. Hunsaker, M. A. Kane, A. K. Wolfe, V. H. Dale, G. W. Suter, C. S. Russell, G. Pion, M. H. Jensen, and V. C. Konar. 2001. Communicating Ecological Indicators to Decision Makers and the Public. Conservation Ecology 5(1):19. https://doi.org/10.5751/ES-00247-050119.

Speziale, K., and C. Ezcurra. 2011. Patterns of alien plant invasions in northwestern Patagonia, Argentina. Journal of Arid Environments 75:890-897. https://doi.org/10.1016/j.jaridenv.2011.04.014.

Stadig, M. H., P. D. Collingsworth, B. M. Lesht, and T. O. Höök. 2019. Spatially heterogeneous trends in nearshore and offshore chlorophyll a concentrations in lakes Michigan and Huron (1998-2013). Freshwater Biology 65:366-378. https://doi.org/10.1111/fwb.13430.

Tanentzap, A. J., S. Cottingham, J. Fonvielle, I. Riley, L. M. Walker, S. G. Woodman, D. Kontou, C. M. Pichler, E. Reisner, and L. Lebreton. 2021. Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use. PLoS Biology 19:e3001389. https://doi.org/10.1371/journal.pbio.3001389.

Timms, B. V. 1992. Lake geomorphology. Wiley-Blackwell, Australia.

Trochine, C., V. Díaz Villanueva, and M. T. Brett. 2020. The ultimate peanut butter on crackers for Hyalella: diatoms on macrophytes rather than bacteria and fungi on conditioned terrestrial leaf litter. Freshwater Biology 66:599-614. https://doi.org/10.1111/fwb.13664.

Troitiño, E., M. Costa, L. Ferrari, and A. Ggiorgi. 2010. La conservación de las zonas ribereñas de un arroyo pampeano. I al de Hidrología de Llanuras Azul, Buenos Aires, Argentina, Buenos Aires.

Wehrly, K. E., J. E. Breck, L. Wang, and L. Szabo-Kraft. 2012. Assessing local and landscape patterns of residential shoreline development in Michigan lakes. Lake reservoir management 28:158-169. https://doi.org/10.1080/07438141.2012.690824.

Wetzel, R. G. 2001. Limnology: lake and river ecosystems. Academic Press, San Diego, CA.

Winward, A. H. 2000. Monitoring the vegetation resources in riparian areas. US Department of Agriculture, Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-47.

Wood, S. 2017. Generalized Additive Models: An Introduction with R, Second Edition. Chapman and Hall/CRC.

Wood, S. N. 2008. Fast stable direct fitting and smoothness selection for generalized additive models. J. R. Statist. Soc. B. 70:495-518. https://doi.org/10.1111/j.1467-9868.2007.00646.x.

Evaluación ambiental de las riberas del lago Nahuel Huapi y propuesta de un índice de calidad de costas

Descargas

Publicado

2022-09-24

Cómo citar

Martyniuk, N., Cuassolo, F., Bastidas Navarro, M., Díaz Villanueva, V., Balseiro, E., & Modenutti, B. (2022). Evaluación ambiental de las riberas del lago Nahuel Huapi y propuesta de un índice de calidad de costas. Ecología Austral, 32(3), 878–893. https://doi.org/10.25260/EA.22.32.3.0.1908