La colonización y descomposición biológica de la hojarasca en un arroyo subtropical

Autores/as

  • Cristiane Biasi Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia & Evolução, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria. Santa Maria, Rio Grande do Sul, Brasil. http://orcid.org/0000-0002-0800-4298
  • Cristina Cerezer Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia & Evolução, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria. Santa Maria, Rio Grande do Sul, Brasil.
  • Sandro Santos Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia & Evolução, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria. Santa Maria, Rio Grande do Sul, Brasil.

DOI:

https://doi.org/10.25260/EA.16.26.2.0.195

Resumen

En arroyos de bajo orden, la comunidad acuática obtiene energía principalmente del aporte de la hojarasca que proviene de la vegetación de la ribera. El procesamiento de las hojas implica medios físicos, químicos y factores biológicos que pueden diferir entre especies vegetales. En esta investigación se evaluó el efecto de la calidad del sustrato sobre el proceso de descomposición y sobre la colonización por invertebrados acuáticos asociados, en un arroyo subtropical. Las hojas de dos especies de árboles nativos, Ficus luschnathiana y Casearia sylvestris, se incubaron en bolsas de malla gruesa en un arroyo durante 28 días, colectándose muestras semanalmente. Las tasas de descomposición fueron mayores en F. luschnathiana que en C. sylvestris. En los primeros siete días del experimento, F. luschnathiana perdió ~60% de la masa inicial, mientras que C. sylvestris perdió ~30%. Las hojas de C. sylvestris fueron inicialmente más palatables que las de F. luschnathiana, tal vez debido a su menor contenido de lignina y celulosa, y a su más baja relación Lignina:N. Estos compuestos estructurales le confieren rigidez a las hojas, las protegen de los herbívoros y las hacen más resistentes a los detritívoros. Sin embargo, la menor dureza de la hoja de F. luschnathiana facilitó la colonización fúngica, lo cual se reflejó, a su vez, en una mayor colonización por invertebrados trituradores y, en general, una mayor pérdida de masa. Los resultados sugieren que la descomposición de la hojarasca fue sensible a la biomasa fúngica y a la dureza de las hojas.Se observó que la colonización microbiana y la disminución de la dureza de las hojas tienen un efecto más fuerte sobre la colonización por invertebrados trituradores y sobre el proceso de descomposición que la calidad química inicial de la hojarasca. La comunidad fúngica es clave en los procesos de degradación en el medio acuático, ya que actúa en la descomposición de la hojarasca, aun en aquella de baja calidad (i.e., F. luschnathiana), promoviendo cambios también en la composición y en la estructura de la comunidad de invertebrados colonizadores.

Biografía del autor/a

Cristiane Biasi, Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia & Evolução, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria. Santa Maria, Rio Grande do Sul, Brasil.

Pós Graduação em Biodiversidade Animal. Departamento de Ecologia & Evolução

Cristina Cerezer, Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia & Evolução, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria. Santa Maria, Rio Grande do Sul, Brasil.

Pós Graduação em Biodiversidade Aninal. Departamento de Ecologia & Evolução

Sandro Santos, Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia & Evolução, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria. Santa Maria, Rio Grande do Sul, Brasil.

Pós Graduação em Biodiversidade Animal. Departamento de Ecologia & Evolução

Citas

Bärlocher, F. 1985. The role of fungi in the nutrition of stream invertebrates. Bot J Linean Soc 91:83-94.

Bastian, M., L. Boyero, B. R. Jackes, and R. G. Pearson. 2007. Leaf litter diversity and shredder preferences in an Australian tropical rain-forest stream. J Trop Ecol 23:219-229.

Benstead, J. P. 1996. Macroinvertebrates and the processing of leaf litter in a tropical stream. Biotropica 28:367-375.

Biasi, C., A. M. Tonin, R. M. Restello, and L. U. Hepp. 2013. Colonisation of leaf litter by Chironomidae (Diptera): influence of chemical quality and exposure duration in a Neotropical stream. Limnologica 43:427-433.

Boyero, L., B. J. Cardinale, M. Bastian, and R. G. Pearson. 2014. Biotic vs. Abiotic Control of Decomposition: A Comparison of the Effects of Simulated Extinctions and Changes in Temperature. Plos One 1:1-6.

Bruder, A., M. H. Schindle, M. S. Moretti, and M. O. Gessner. 2013. Litter decomposition in a temperate and a tropical stream: the effects of species mixing, litter quality and shredders. Freshwater Biol 59:438-449.

Callisto, M., J. F. Gonçalves Jr, and M. A. S. Graça. 2007. Leaf litter as a possible food source for chironomids (Diptera) in Brazilian and Portuguese headwater streams. Rev Brasil Zool 24:442-448.

Castillero, A. C. 1984. Uso da terra por fotografias aéreas no município de Santa Maria, RS. Monografia de Especialização. Universidade Federal de Santa Maria, Santa Maria.

Chara-Serna, A. M., J. D. Chara, M. C. Zuniga, R. G. Pearson, and L. Boyero. 2012. Diets of leaf litter-associated invertebrates in three tropical streams. Ann Limnol - Int J Lim 48:139-144.

Chergui, H., and E. Pattee. 1993. Fungal and invertebrate colonization of Salix fresh and dry leaves in a Moroccan river system. Archiv Fuür Hydrobiologie 127:57-72.

Cogo, G. B., and S. Santos. 2013. The role of aeglids in shredding organic matter in Neotropical streams. J Crustacean Biol 34:519.

Covich, A. P., M. C. Austen, F. Bärlocher, E. Chauvet, B. J. Cardinale, et al. 2004. The role of biodiversity in the functioning of freshwater and marine benthic ecosystems. Bio Science 54:767-775.

Cummins, K. W., R. W. Merritt, and P. C. N. Andrade. 2005. The use of invertebrate functional groups tocharacterize ecosystem attributes in selected streams and rivers in south Brazil. Stud Neotrop Fauna Environ 40:69-89.

Dudgeon, D. 1982. An investigation of physical biotic processing of two species of leaf litter in Tai Po Kau forest stream, New Territories, Hong Kong. Arch Hydrobiol 64:1-35.

Dudgeon, D., and K. K. Y. Wu. 1999. Leaf litter in a tropical stream: food or substrate for macroinvertebrates? Arch Hydrobiol 146:65-82.

Epler, J. 2001. Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. Orlando, Departament of Enviromental and Natural Resources. Pp. 378.

Ferreira, V., A. C. Encalada, and M. A. S. Graça. 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Sci 31:945-962.

Ferreira, V., M. A. S. Graça, J. L. M. P. De Lima, and R. Gomes. 2006. Role of physical fragmentation and invertebrate activity in the breakdown rate of leaves. Archiv Hydrobiol 165:493-513.

Fernández, H. R., and E. Domínguez. 2001. Guía para La determinación de los artrópodos bentônicos Sudamericanos. Universidad Nacional de Tucumán, Tucumán, Argentina. Pp. 282.

Flindt, M. R., and A. I. Lillebo. 2005. Determination of total nitrogen and phosphorus in leaf litter. Pp. 53-59 in: M.A.S. Graça, F. B Ärlocher and M. O. Gessner (eds.). Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht.

Foucreau, N., S. Puijalon, F. Hervant, and C. Piscart. 2003. Effect of leaf litter characteristics on leaf conditioning and on consumption by Gammarus pulex. Freshwater Biol 58:1672-1681.

Fonseca, A. L. S., J. R. I. Bianchini, C. M. M. Pimenta, C. B. P. Soares, and N. Mangiavacchi. 2013. The flow velocity as driving force for decomposition of leaves and twigs. Hydrobiologia 703:59-67.

Gonçalves Jr, J. F., M. A. S. Graça, and M. Callisto. 2007. Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shredders. Freshwater Biol 52:1440-1451.

Gonçalves Jr, J. F., R. S. Rezende, N. M. Martins, and R. S. Gregório. 2012. Leaf breakdown in an Atlantic Rain Forest stream. Austral Ecol 37:807-815.

Gotelli, N. J., and R. K. Colwell. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379-391.

Graça, M. A. S., and C. Canhoto. 2006. Leaf litter processing in low order streams. Limnetica 25:1-10.

Graça, M. A. S., C. Cressa, M. O. Gessner, M. J. Feio, K. A. Callies, and C. Barrios. 2001. Food quality, feedingpreferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biol 46:1-11.

Graça, M. A. S., and C. Cressa. 2010. Leaf quality of some tropical and temperate tree species as food resource for stream shredders. Internat Rev Hydrobiol 95:27-41.

Graça, M. A. S., and M. Zimmer. 2005. Leaf toughness. Pp. 121-125 in: M. A. S. Graça, F. Bärlocher and M. O. Gessner (eds.). Methods to Study Litter Decomposition: A Practical Guide. Springer, Dordrecht.

Graça, M. A. S., L. Maltby, and P. Calow.1993. Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus. Effects on growth, reproduction and physiology. Oecologia 96:304-309.

Grubbs, S. A., R. E. Jacobsen, and K. W. Cummins. 1995. Colonization by Chironomidae (Insecta, Diptera) on distinct leaf substrates in an Appalachian mountain stream. Ann Limnol 31:105-118.

Haapala, A., T. Muotka, and A. Markkola. 2001. Breakdown and macroinvertebrate and fungal colonization of alder, birch, and willow leaves in a boreal forest stream. JNABS 20:395-407.

Hepp, L. U., C. Biasi, S. V. Milesi, F. O. Veiga, and R. M. Restello. 2008. Chironomidae (Diptera) larvae associated to Eucalyptus globulus and Eugenia uniflora leaf litter in a Subtropical stream (Rio Grande do Sul, Brazil). Acta Limnol Brasil 22:345-350.

Janke, H., and S. Trivinho-Strixino. 2007. Colonization of leaf litter by aquatic macroinvertebrates: a study in a low order tropical stream. Acta Limnol Brasil 19:109-115.

König, R., L. U. Hepp, and S. Santos. 2014. Colonisation of low- and high-quality detritus by benthicmacroinvertebrates during leaf breakdown in a subtropical stream. Limnologica 45:61-68.

Landeiro, V. L., N. Hamada, and A. S. Melo. 2008. Responses of aquatic invertebrate assemblages and leaf breakdown to macroconsumer exclusion in Amazonian ‘terra firme’ streams. Fund Appl Limnol 172:49-58.

Lecerf, A., G. Risnoveanu, C. Popescu, M. O. Gessner, and E. Chauvet. 2007. Decomposition of diverse litter mixtures in streams. Ecology 88:219-227.

Leite-Rossi, L. A., and S. Trivinho-Strixino. 2012. Are sugar cane leaf-detritus well colonized by aquatic macroinvertebrates? Acta Limnol Brasil 24:303-313.

Leroy, C. J., and J. C. Marks. 2006. Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshwater Biol 51:605-617.

Li, A. O. Y., L. C. Y. Ng, and D. Dudgeon. 2009 Effects of leaf toughness and nitrogen content on litterbreakdown and macroinvertebrates in a tropical stream. Aquat Sci 71:80-93.

Ligeiro, R., M. S. Moretti, J. R. Gonçalves Jr, and M. Callisto. 2010. What is more important for invertebrate colonization in a stream with low-quality litter inputs: exposure time or leaf species? Hydrobiologia 654:125-136.

Merritt, R. W., R. W. Cummins, and M. B. Berg. 2008. An introduction to the aquatic insects of North America. Dubuque. Kendal/Hunt. USA. Pp. 1214.

Moore, T. N., and P. G. Fairweather. 2006. Decay of multiple species of seagrass detritus is dominated by species identity, with an important influence of mixing litter. Oikos 114:329-337.

Moretti, M. S., J. F. Gonçalves Jr, and M. Callisto. 2007. Leaf breakdown in two tropical streams: Differences between single and mixed species packs. Limnologica 37:250-258.

Mugnai, R., J. L. Nessimian, and D. F. Baptista. 2010. Manual de identificação de macroinvertebrados aquáticos do Estado do Rio de Janeiro. Rio de Janeiro: Technical Books Editora. Pp. 174.

Nolen, J. A., and R. G. Pearson. 1993. Factors affecting litter processing by Anisocentropus kirranus (Trichoptera: Calamoceratidae) from an Australian tropical rainforest stream. Freshwater Biol 29:469-479.

Oertli, B. 1993. Leaf litter processing and energy flow through macroinvertebrates in a woodland pond (Switzerland). Oecologia 96:466-477.

Pascoal, C., and F. Cássio. 2004. Contribution of fungi and bacteria to leaf litter decomposition in a polluted river. Appl Environm Microbiol 70:5266-5273.

Patrick, C. J. 2013. The effect of shredder community composition on the production and quality of fine particulate organic matter. Freshwat Sci 32:1026-1035.

Pérez-Harguindeguy, N., S. Díaz, J. H. C. Cornelissen, F. Vendramini, M. Cabido, and A. Castellanos. 2000. Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina. Plant and Soil 218:21-30.

Petersen, R. C., and K. W. Cummins. 1974. Leaf processing in a woodland stream. Freshwater Biol 4:343-368.

Pettit, N. E., T. Davies, J. B. Fellman, P. F. Grierson, D. M. Warfe, and P. M. Davies. 2012. Leaf litter chemistry, decomposition and assimilation by macroinvertebrates in two tropical streams. Hydrobiologia 680:63-77.

R Development Core Team. 2012. R: A Language and Environment for Statistical Computing, Reference Index Version 2.15.2. R Foundation for Statistical Computing, Vienna, Austria.

Ratnaraja, L., and L. A. Barmuta. 2009. The effects of leaf toughness on feeding preference by two Tasmanian shredders. Hydrobiologia 636:173-178.

Robinson, C. T., M. O. Gessner, and J. V. Ward. 1998. Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshwater Biol 40:215-228.

Rosemond, A. D., C. M. Pringle, and A. Ramírez. 1998. Macroconsumer effects on insect detritivores and detritus processing in a tropical stream. Freshwater Biol 39:515-523.

Schädler, M., and R. Brandl. 2005. Do invertebrate decomposers affect the disappearance rate of litter mixtures? Soil Biol Biochem 37:329-337.

Schindler, M. H., and M. O. Gessner. 2009. Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology 90:1641-1649.

Suberkropp, K. 1992. Interactions with invertebrates. Pp. 118-134 in: H. Remmert, F. B. Golley, W. D. Billings, O. L. Lange and J. S. Olson (eds.). The Ecology of Aquatic Hyphomycetes. Springer-Verlag, Heidelberg & New York.

Swan, C. M., and M. A. Palmer. 2004. Leaf diversity alters litter breakdown in a Piedmont stream. JNABS 23:15-28.

Tanaka, M. O., A. C. A. Ribas, and A. L. T. Souza. 2006. Macroinvertebrate succession during leaf litter breakdown in a perennial karstic river in Western Brazil. Hydrobiologia 568:493-498.

Trivinho-Strixino, S. 2011. Larvas de Chironomidae: guia de identificação. Departamento de Hidrobiologia/Laboratório de Entomologia Aquática. UFSCar, São Carlos. Pp. 229.

Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. The river continuum concept. Can J Fish Aquat Sci 37:130-137.

Van Soest, P. J. 1993. Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fibre and lignin. J Assoc of Ana Chem 46:829-835.

Wantzen, K. M., and R. Wagner. 2006. Detritus processing by invertebrate shredders: a neotropical temperate comparison. JNABS 25:216-232.

Webster, J. R., and E. F. Benfield. 1986. Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567-594.

Wright, M. S., and A. P. Covich. 2005. Relative importance of bacteria and fungi in a tropical headwater stream: leaf decomposition and invertebrate feeding preference. Microbial Ecol 49:536-546.

Young, J. C. 1995. Microwave-assisted extraction of the fungal metabolite ergosterol and total fatty acids. J Agric Food Chem 43:2904-2910.

Descargas

Publicado

2016-08-22

Cómo citar

Biasi, C., Cerezer, C., & Santos, S. (2016). La colonización y descomposición biológica de la hojarasca en un arroyo subtropical. Ecología Austral, 26(2), 189–199. https://doi.org/10.25260/EA.16.26.2.0.195