Reducción del drenaje profundo y la lixiviación de nitrógeno en rotaciones agrícolas con cultivos de cobertura

Autores/as

  • Silvina I. Portela Grupo Gestión Ambiental, EEA Pergamino, INTA. Pergamino, Buenos Aires, Argentina.
  • Silvina B. Restovich Grupo Gestión Ambiental, EEA Pergamino, INTA. Pergamino, Buenos Aires, Argentina.
  • Hugo M. Gonzalez Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de la Provincia de Buenos Aires y CONICET. Pergamino, Buenos Aires, Argentina.
  • María J. Torti Laboratorio Regional de Calidad de Alimentos, Suelos y Aguas. EEA Pergamino, INTA. Pergamino, Buenos Aires, Argentina.

DOI:

https://doi.org/10.25260/EA.16.26.3.0.307

Resumen

Los cambios de vegetación pueden alterar los flujos de agua y nitrógeno (N) de los ecosistemas. La intensificación de las rotaciones con cultivos de cobertura (CC) otoño-invernales reduce el N del suelo y el riesgo de lixiviación durante los excesos hídricos. El objetivo de este trabajo fue contrastar el drenaje profundo y la lixiviación de N en una rotación soja-maíz con y sin CC, utilizando lisímetros. Se cultivó avena antes de soja y avena+vicia antes de maíz. Las precipitaciones fueron 732 y 562 mm durante los períodos intercultivo 2014 y 2015, y 817 y 705 mm durante los cultivos de soja y maíz, respectivamente. La inclusión de CC redujo el drenaje durante los períodos intercultivo (de 41 a 25% y de 22 a 9% de la precipitación durante el primer y segundo período intercultivo, respectivamente) y durante el cultivo de soja (de 18 a 14% de la precipitación). Durante el cultivo de maíz, el drenaje fue similar en las dos rotaciones; representó el 14% de la precipitación. La concentración media de N-NO 33 del drenaje fue de 6 y 15 mg/L para la rotación con y sin CC, respectivamente. La inclusión de CC redujo la lixiviación de 35 a 14 y de 17 a 3 kg N/ha durante los períodos intercultivo 2014 y 2015, respectivamente, y de 36 a 3 y de 15 a 6 kg N/ha durante los cultivos de soja y maíz, respectivamente. Estas reducciones, sumadas al aporte adicional de N por fijación biológica de vicia, produjeron balances de N positivos o cercanos a neutro, mientras que la rotación sin CC presentó balances negativos. Además de mejorar la circulación interna de N, las reducciones en el drenaje con CC se pueden traducir en menor recarga del acuífero y contribuir a la regulación de inundaciones durante períodos lluviosos.

Citas

Álvarez, R., H. S. Steinbach, and J. L. De Paepe. 2014. A regional audit of nitrogen fluxes in pampean agroecosystems. Agriculture, Ecosystems & Environment 184:1-8.

Aradas, R., J. Lloyd, and J. Palmer. 2002. Groundwater problems in low elevation regional plains: the Buenos Aires province example. Pp. 613-623 en: Bocanegra, E., D. Martínez and H. Massone (eds.). Groundwater and human development. Mar del Plata, Buenos Aires.

Austin, A. T., G. Piñeiro, and M. González-Polo. 2006. More is less: agricultural impacts on the N cycle in Argentina. Biogeochemistry 79:45-60.

Beaudoin, N., B. Mary, F. Laurent, G. Aubrion, and J. K. Saad. 2004. Is the N balance a good indicator of nitrogen losses in arable systems? Pp. 487-489 en: D. J.Hatch, D. R. Chadwick, S. C. Jarvis and J. A. Roker (eds.). Controlling nitrogen flows and losses. Wageningen Academic Publishers. The Netherlands.

Carnelos, D. A., C. L. Michel, S. Portela, E. G. Jobbágy, R. B. Jackson, et al. 2014. Variación espacial y temporal de las deposiciones atmosféricas en Argentina y Uruguay. Reunión Binacional Uruguay-Argentina de Agrometeorología y XV Reunión Argentina de Agrometeorología. 1-3 octubre, Piriápolis, Uruguay.

Caviglia, O. P., V. O. Sadras, and F. H. Andrade. 2004. Intensification of agriculture in the south-eastern Pampas: I. Capture and efficiency in the use of water and radiation in double-cropped wheat-soybean. Field Crops Research 87(2-3):117-129.

Caviglia, O. P., S. Albarenque, C. Gregorutti, N. Van Opstal, and R. Melchiori. 2012. Cuál es el impacto de las alternativas invernales de intensificación sobre el balance hídrico del sistema? Revista técnica de la asociacion argentina de productores en siembra directa. Aapresid. Pp. 2-10.

Constantin, J., B. Mary, F. Laurent, G. Aubrion, A. Fontaine, et al. 2010. Effects of catch crops, no till and reduced nitrogen fertilization on nitrogen leaching and balance in three long-term experiments. Agriculture, Ecosystems and Environment 135(4):268-278.

Echeverría, H. E., and H. Sainz Rozas. 2006. Maíz. Pp. 255-282 en: H. E. Echeverría and F. O. García (eds.). Fertilidad de suelos y fertilización de cultivos. Editorial INTA. Buenos Aires, Argentina.

FAOSTAT. 2013. http://faostat.fao.org/

Florio, E. L., J. L. Mercau, and M. D. Nosetto. 2015. Factores que regulan la dinámica freática en dos ambientes de la Pampa Interior con distintos regímenes de humedad. Ciencia del Suelo 33(2):263-272.

Forte Lay, J. A., E. Kruse, and J. L. Aiello. 2007. Hydrologic scenarios applied to the agricultural management of the northwest of the Buenos Aires Province, Argentina. GeoJournal 70(4):263-271.

García, F. O., I. A. Ciampitti, G. Rubio, and L. I. Picone. 2009. La fertilización fosfatada en la Argentina: Actualidad, manejo y perspectivas. Jornadas Nacionales “Sistemas Productivos Sustentables: Fósforo, Nitrógeno y Cultivos de Cobertura”. Bahía Blanca, Argentina.

Goulding, K. 2004. Pathways and losses of fertilizer nitrogen at different scales. Pp. 209-219 en: Mosier, A. R., J. K. Syers and J. R. Freney (eds.). Agriculture and the nitrogen cycle. Island Press. Washington, USA.

Hall, A. J., C. M. Rebella, C. M. Ghersa, and J. P. Culot. 1992. Field-crop systems of the pampas. Pp. 413-450 en: Pearson, CJ (ed.). Field crop ecosystems. Ecosystems of the world. Elsevier. Amsterdam.

Hatch, D. K., W. T. Goulding, and D. V. Murphy. 2003. Nitrogen. Pp. 7-27 en: Haygarth, P. M. and S. C. Jarvis (eds.). Agriculture, hydrology and water quality. CABI Publishing. Wallingford.

Lajtha, K. 2000. Ecosystem nutrient balance and dynamics. Pp. 249-264 en: Sala, O. E., R. B. Jackson, H. A. Mooney and R. W. Howarth (eds.). Methods in ecosystem science. Springer-Verlag. New York.

Mastrocicco, M., N. Colombani, E. Salemi, and G. Castaldelli. 2010. Numerical assessment of effective evapotranspiration from maize plots to estimate groundwater recharge in lowlands. Agricultural Water Management 97(9):1389-1398.

Menéndez, N., N. Badano, E. Lecertua, F. Re, and M. Re. 2012. Evaluación de las inundaciones y las obras de drenaje en la cuenca del Salado (Prov. Buenos Aires) mediante modelación numérica. Proyecto LHA 331. Informe LHA 01-331-12. Instituto Nacional del Agua. Subsecretaria de Recursos Hídricos. Secretaría de Obras Públicas. República Argentina.

Molenat, J., C. Gascuel-Odoux, L. Ruiz, and G. Gruau. 2008. Role of water table dynamics on stream nitrate export and concentration in agricultural headwater catchment (France). Journal of Hydrology 348(3-4):363-378.

Moscatelli, G. N. 1991. Los suelos de la región pampeana. Pp. en: Barsky, O. (ed.). El desarrollo agropecuario pampeano. INDEC-INTA-IICA. Buenos Aires.

Mulvaney, R. L. 1996. Nitrogen inorganic forms. Pp. 1123-1184 en: Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour et al. (eds.). Methods of soil analysis: Chemical methods. Part 3. Soil Science Society of America and American Society of Agronomy. Madison, Wisconsin, USA.

Nosetto, M. D., E. G. Jobbágy, R. B. Jackson, and G. A. Sznaider. 2009. Reciprocal influence of crops and shallow ground water in sandy landscapes of the Inland Pampas. Field Crops Research 113:138-148.

Nosetto, M. D., E. G. Jobbágy, A. B. Brizuela, and R. B. Jackson. 2012. The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems & Environment 154(0):2-11.

Perakis, S. S. 2002. Nutrient limitation, hydrology and watershed nitrogen loss. Hydrological Processes 16:3507-3511.

Perakis, S. S., and L. O. Hedin. 2002. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature 415:416-419.

Portela, S., A. Andriulo, M. Sasal, B. Mary, and E. Jobbágy. 2006. Fertilizer vs. organic matter contributions to nitrogen leaching in cropping systems of the Pampas: 15N application in field lysimeters. Plant and Soil 289(1-2):265-277.

Portela, S. I. 2012. Transferencia de nitrógeno de ecosistemas agrícolas recientemente intensificados a acuíferos: efecto de la variación en las precipitaciones. Tesis para optar al título de Doctor de la Universidad de Buenos Aires, Área Ciencias Agropecuarias. Facultad de Agronomía, Universidad de Buenos Aires. Pp. 110.

Portela, S. I., A. E. Andriulo, E. G. Jobbágy, and M. C. Sasal. 2009. Water and nitrate exchange between cultivated ecosystems and groundwater in the Rolling Pampas. Agriculture, Ecosystems & Environment 134(3-4):277-286.

Re, M., and V. Barros. 2009. Extreme rainfalls in SE South America. Climatic Change 96(1):119-136.

Red de Monitoreo de las Aguas y del Territorio. 2015. http://RED-MATE.com.ar

Restovich, S. B., A. E. Andriulo, and S. I. Portela. 2012. Introduction of cover crops in a maize–soybean rotation of the Humid Pampas: Effect on nitrogen and water dynamics. Field Crops Research 128(0):62-70.

Salvagiotti, F., K. G. Cassman, J. E. Specht, D. T. Walters, A. Weiss, et al. 2008. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crops Research 108(1):1-13.

SAS. 2008. SAS/STAT User’s Guide. Version 9.2. SAS Institute Inc., Cary, NC. Pp. 846.

Sasal, M. C., M. G. Castiglioni, and M. G. Wilson. 2010. Effect of crop sequences on soil properties and runoff on natural-rainfall erosion plots under no tillage. Soil and Tillage Research 108:24-29.

Soil Survey Staff. 1999. Soil taxonomy, a basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook Number 436. U.S. Department of Agriculture, Natural Resources Conservation Service. Washington D.C.

Thorup-Kristensen, K., J. Magid, and L. S. Jensen. 2003. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Pp. 227-302. Advances in Agronomy. Academic Press.

Viglizzo, E. F., E. G. Jobbágy, L. Carreño, F. C. Frank, R. Aragón, et al. 2009. The dynamics of cultivation and floods in arable lands of Central Argentina. Hydrology and Earth System Sciences 13(4):491-502.

Zhang, Y. K., and K. E. Schilling. 2006. Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: A Field observation and analysis. Journal of Hydrology 319(1-4):328-338.

Reducción del drenaje profundo y la lixiviación de nitrógeno en rotaciones agrícolas con cultivos de cobertura

Descargas

Publicado

2016-10-04

Cómo citar

Portela, S. I., Restovich, S. B., Gonzalez, H. M., & Torti, M. J. (2016). Reducción del drenaje profundo y la lixiviación de nitrógeno en rotaciones agrícolas con cultivos de cobertura. Ecología Austral, 26(3), 212–220. https://doi.org/10.25260/EA.16.26.3.0.307