La estructura física de un cirripedio invasor influye los ensambles de macroinvertebrados

Autores/as

  • Maria M. Mendez Instituto de Biología de Organismos Marinos (IBIOMAR- CONICET)
  • Alejandro Bortolus Grupo de Ecología en Ambientes Costeros (IPEEC-CONICET) Puerto Madryn. Chubut. Argentina.
  • Evangelina Schwindt Grupo de Ecología en Ambientes Costeros (IBIOMAR-CONICET), Puerto Madryn. Chubut. Argentina.

DOI:

https://doi.org/10.25260/EA.17.27.2.0.407

Resumen

Para asentarse y evitar la depredación y la desecación, muchas especies de invertebrados usan los microhábitats que generan los cirripedios. En la Argentina, el cirripedio acorazado invasor Balanus glandula no sólo coloniza las costas rocosas; también ha invadido con éxito marismas de fondos blandos, donde forma grandes estructuras tridimensionales que facilitan la presencia de otros invertebrados. Esto afecta la estructura de la comunidad. Se colocaron cirripedios artificiales en una marisma de la Patagonia para imitar la estructura física de los agregados naturales. El experimento incluyó controles naturales y de materiales, y dos niveles de complejidad estructural que representaron la variedad de los agregados que se encuentran en la naturaleza: a) agregados con espacios vacíos internos y galerías entre los cirripedios, y b) agregados sin espacios y galerías. Después de nueve meses, el ensamble de macroinvertebrados se comparó entre tratamientos. La composición del ensamble fue significativamente diferente entre los tratamientos artificiales y las parcelas control, pero no hubo efecto de los cirripedios artificiales sobre la riqueza y diversidad de macroinvertebrados. Esto sugiere que la estructura física de B. glandula podría explicar el efecto ejercido sobre la comunidad. Por otra parte, se registraron reclutamiento de B. glandula sobre los cirripedios artificiales, lo que resalta la importancia que la estructura física de esta especie tendría sobre su persistencia en las marismas de fondos blandos.

https://doi.org/10.25260/EA.17.27.2.0.407

Citas

Almany, G. R. 2004. Does increased habitat complexity reduce predation and competition in coral reef fish assemblages? Oikos 106:275–284.

Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46.

Anderson, M. J., R. N. Gorley, and K. R. Clarke. 2008. PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, United Kingdom.

Barnes, M. 2000. The use of intertidal barnacle shells. Oceanogr Mar Biol Annu Rev 38:157–187.

Berkenbusch, K. and A. A. Rowden. 2003. Ecosystem engineering-moving away from 'just-so' stories. New Zealand J Ecol 27:67–73.

Bertness, M. D. 1984. Habitat and community modification by an introduced herbivorous snail. Ecology 65:370–381.

Bortolus, A., E. Schwindt, P. J. Bouza, and Y. L. Idaszkin. 2009. A characterization of Patagonian salt marshes. Wetlands 29:772–780.

Bortolus, A., P. Laterra, and O. Iribarne. 2004. Crab-mediated phenotypic changes in Spartina densiflora Brong. Est Coast Shelf Sci 59:97–107.

Bouma, T. J., S. Olenin, K. Reise, and T. Ysebaert. 2009. Ecosystem engineering and biodiversity in coastal sediments: posing hypotheses. Helg Mar Res 63:95–106.

Buschbaum, C., S. Dittmann, J.-S. Hong, I.-S. Hwang, M. Strasser, M. Thiel, N. Valdivia, S. P. Yoon, and K. Reise. 2009. Mytilid mussels: global habitat engineers in coastal sediments. Helgol Mar Res 63:47–58.

Callaway, R. 2003. Long-term effects of imitation polychaetes tubes on benthic fauna: they anchor Mytilus edulis (L.) banks. Exp Mar Biol Ecol 283:115–132

Commito, J. A., Celano, E. A., Celico, H. J., Como, S. and C. P. Johnson. 2005. Mussels matter: postlarval dispersal dynamics altered by a spatially complex ecosystem engineer. J Exp Mar Biol Ecol 316:133–147.

Crooks, J. A.2002. Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166

Dayton, P. K. 1971. Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41:351–389.

Gutiérrez, J. L., C. G. Jones, D. L. Strayer, and O. O. Iribarne. 2003. Mollusks as ecosystem engineers: The role of shell production in aquatic habitats. Oikos 101:79–90.

Harley, C. D. G. 2006. Effects of physical ecosystem engineering and herbivory on intertidal community structure. Mar Ecol Prog Ser 317:29–39.

Hastings, A., J. E. Byers, J. A. Crooks, K. Cuddington, C. G. Jones, J. G. Lambrinos, T. S. Talley, and W. G. Wilson. 2007. Ecosystem engineering in space and time. Ecol Lett 10:153–164.

Hoey, A. S., and D. R. Bellwood. 2011. Suppression of herbivory by macroalgal density: a critical feedback on coral reefs?. Ecol Lett 14:267–273.

Isacch, J. P., C. S. B. Costa, L. Rodríguez-Gallego, D. Conde, M. Escapa, D. A. Gagliardini, and O. O. Iribarne. 2006. Distribution of salt marsh plant communities associated with environmental factors along a latitudinal gradient on the southwest Atlantic coast. J Biogeogr 33:888–900.

Jones, C. G., J H. Lawton, and M. Shachak. 1997. Positive and negative effects of organisms as physical engineers. Ecology 78:1946–1957.

Jones, C. G., J H. Lawton, and M. Shachak. 1994. Organisms as ecosystems engineers. Oikos 69:373–386.

Kado, R. 2003. Invasion of Japanese shores by the NE Pacific barnacle Balanus glandula and its ecological and biogeographical impact. Mar Ecol Prog Ser 249:199–206.

Kelaher, B. P. 2002. Influence of physical characteristics of coralline turf on associated macrofaunal assemblages. Mar Ecol Prog Ser 232:141–148.

Kelaher, B. P., J. C. Castilla, and L. Prado. 2007. Is there redundancy in bioengineering for molluscan assemblages on the rocky shores of central Chile? Rev Chil Hist Nat 80:173–186.

Lohse, D. P. 1993. The effects of substratum type on population dynamics of three common intertidal animals. J Exp Mar Biol Ecol 173: 133–154.

Mendez, M. M., E. Schwindt, and A. Bortolus. 2013. Patterns of substrata use by the invasive acorn barnacle Balanus glandula in Patagonian salt marshes. Hydrobiologia 700:99–107.

Mendez, M. M., M. C. Sueiro, E. Schwindt, and A. Bortolus. 2014. Invasive barnacle fouling on an endemic burrowing crab: mobile basibionts as vectors to invade a suboptimal habitat. Thalassas 30:39–46.

Mendez, M. M., E. Schwindt, and A. Bortolus. 2015. Differential

benthic community response to increased habitat complexity mediated by an invasive barnacle. Aq Ecol 49:441–452.

Menge, B. A. 1976. Organization of the New England rocky intertidal community: role of predation, competition, and environmental heterogeneity. Ecol Monogr 46:355–393.

Neira, C., E. D. Grosholz, L. A. Levin, and R. Blake. 2006. Mechanisms generating modification of benthos following tidal flat invasion by a Spartina (alterniflora x foliosa) hybrid. Ecol Appl 16:1391–1404.

Paine, R. T. 1974. Intertidal community structure. Oecologia 15:93-120.

Palomo, M. G., J. People, M. G. Chapman, and A. J. Underwood. 2007. Separating the effects of physical and biological aspects of mussel beds on their associated assemblages. Mar Ecol Prog Ser 344:131–142.

Prado, L.,and J. C. Castilla. 2006. The bioengineer Perumytilus purpuratus (Mollusca: Bivalvia) in central Chile: biodiversity, habitat structural complexity and environmental heterogeneity. J Mar Biol Assoc UK 86:417–421.

Qian, P. Y., and L. L. Liu. 1990. Recruitment of barnacles into empty adult tests J Exp Mar Biol Ecol 142:63–74.

Rohde, K. 1984, Ecology of marine parasites. Helgoland Marine Research 37: 5-33.

Savoya, V., and E. Schwindt. 2010. Effect of the substratum in the recruitment and survival of the introduced barnacle Balanus glandula (Darwin 1854) in Patagonia, Argentina. J Exp Mar Biol Ecol 382:125–130.

Schubart, C. D., L. V. Basch, and G. Miyasato. 1995.

Recruitment of Balanus glandula Darwin (Crustacea: Cirripedia) into empty barnacle tests and its ecological consequences. J Exp Mar Biol Ecol 186:143-181.

Schwindt, E. 2007. The invasion of the acorn barnacle Balanus glandula in the south-western Atlantic 40 years later. J Mar Biol Assoc UK 87:1219–1225.

Schwindt, E., A. Bortolus, Y. L. Idaszkin, V. Savoya, and M. M. Mendez. 2009. Salt marsh colonization by a rocky shore invader: Balanus glandula Darwin (1854) spreads along the Patagonian coast. Biol Invasions 11:1259–1265.

Schwindt, E., A. Bortolus, and O. O. Iribarne. 2001. Invasion of a reefbuilder polychaete: direct and indirect impacts on the native benthic community structure. Biol Invasions 3:137–149.

Sellheim, K., J. J. Stachowicz, and R. C. Coates. 2010. Effects of a nonnative habitat-forming species on mobile and sessile epifaunal communities. Mar Ecol Progr Ser 398:69–80.

Servicio de Hidrografía Naval. 2012. http://www.hidro.gov.ar

Shannon, C. E., and W. Weaver. 1949. The mathematical theory of communications. University of Illinois Press, Urbana, United States.

Simon-Blecher, N., Z. Granevitze, and Y. Achituv. 2008. Balanus glandula: from North-west America to the west coast of South Africa. Afr J Mar Sci 30:85–92.

Sousa, R., J. L. Gutiérrez, and D. C. Aldridge. 2009. Non-indigenous invasive bivalves as ecosystem engineers. Biol Invasions 11:2367–2385.

Spivak, E. D.,and S. G. L’Hoste. 1976. Presencia de cuatro especies de Balanus en la costa de la Provincia de Buenos Aires. Distribución y aspectos ecológicos. Author’s edition, Mar del Plata, Buenos Aires, Argentina.

Sueiro, M. C., A. Bortolus, and E. Schwindt. 2011. Habitat complexity and community composition: relationships between different ecosystem engineers and the associated macroinvertebrate assemblages. Helgol Mar Res 65:467–477.

Sueiro, M. C., A. Bortolus, and E. Schwindt. 2012. The role of the physical structure of Spartina densiflora Brong. in structuring macroinvertebrate assemblages. Aquat Ecol 46:25–36.

Thiel, M.,and N. Ullrich. 2002. Hard rock versus soft bottom: the fauna associated with intertidal mussel beds on hard bottoms along the coast of Chile, and considerations on the functional role of mussel beds. Helgol Mar Res 56:21–30.

Wright, J. P. and C. G. Jones. 2006. The concept of organisms as ecosystem engineers ten years on: Progress, limitations, and challenges. BioScience 56:203–209.

Zar, J. H. 1999. Biostatistical analysis. Prentice-Hall Inc, New Jersey, United States.

La estructura física de un cirripedio invasor influye los ensambles de macroinvertebrados

Descargas

Publicado

2017-08-17

Cómo citar

Mendez, M. M., Bortolus, A., & Schwindt, E. (2017). La estructura física de un cirripedio invasor influye los ensambles de macroinvertebrados. Ecología Austral, 27(2), 296–304. https://doi.org/10.25260/EA.17.27.2.0.407