Uso de la tierra y ambiente local de descomposición en el Chaco Semiárido de Córdoba, Argentina

Autores/as

  • Anibal Cuchietti Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC). Córdoba, Argentina.
  • Eugenia Marcotti Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, CONICET, CCT-Mendoza, Mendoza, Argentina.
  • Georgina Conti Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC). Córdoba, Argentina.
  • Fernando Casanoves Centro Agronómico Tropical de Investigación y Enseñanza, CATIE, Costa Rica.
  • María J. Mazzarino Instituto de Investigaciones en Biodiversidad y Medioambiente (CONICET-CRUB), Bariloche. Río Negro, Argentina.
  • María V. Vaieretti Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC). Córdoba, Argentina.
  • Sandra Díaz Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC). Córdoba, Argentina. FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina.
  • Natalia Pérez-Harguindeguy Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC). Córdoba, Argentina. FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina.

DOI:

https://doi.org/10.25260/EA.17.27.3.0.434

Resumen

El cambio en el uso de la tierra es un proceso clave debido a sus efectos directos sobre la identidad y la estructura de la vegetación. En el Chaco Semiárido se conoce poco acerca del impacto de los cambios en la vegetación sobre los procesos relacionados con el ciclado de nutrientes (e.g., la descomposición). En este trabajo analizamos si las modificaciones en la vegetación, producto de distintas intensidades en el uso de la tierra, producen cambios en las condiciones del ambiente local, y si estos cambios afectan el patrón de descomposición de dos materiales comunes. En las configuraciones vegetales analizadas encontramos que el cambio en el uso de la tierra tiene un impacto evidente sobre la cobertura vegetal, aunque no se traduce en cambios consistentes en el ambiente local de descomposición. Específicamente, encontramos que el incremento en la intensidad de uso se asoció a la disminución de la cobertura vegetal, de la altura de esa cobertura y de la cantidad de broza depositada sobre el suelo. Estas modificaciones estuvieron vinculadas a una disminución del contenido total de C y N en el suelo. Sin embargo, los cambios en la estructura de la vegetación no se relacionaron con los cambios en las condiciones ambientales locales (temperatura y humedad), pese a que se detectaron diferencias en esas variables ambientales entre las distintas configuraciones vegetales. Por su parte, la descomposición fue mayor en aquellos sitios con menor cobertura vegetal, que, a su vez, presentaron menor temperatura del aire. Estos resultados sugieren que el cambio en el uso de la tierra tiene un impacto muy evidente sobre la cobertura de la vegetación, pero este impacto no se traduce en cambios consistentes en el ambiente local de descomposición.En estudios futuros será interesante evaluar la contribución de los procesos de degradación abiótica (fotodegradación y fragmentación física) sobre la descomposición y el ciclado de nutrientes.

DOI: https://doi.org/10.25260/EA.17.27.3.0.434

Citas

Abril, A., and E. H. Bucher. 1999. The effects of overgrazing on soil microbial community and fertility in the Chaco dry savannas of Argentina. Appl Soil Ecol 12(2):159-167.

Adams, J. 2007. Vegetation - Climate Interaction. How Vegetation Makes the Global Environment. Springer, Praxis Publishing Ltd, Chichester, UK.

Anderson-Teixeira, K. J., P. K. Snyder, T. E. Twine, S. V. Cuadra, M. H. Costa, and E. H. DeLucia. 2012. Climate-regulation services of natural and agricultural eco regions of the Americas. Nat Climate Change 2(3):177-181.

Arx, G., E. Graf Pannatier, A. Thimonier, and M. Rebetez. 2013. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J Ecol 101(5):1201-1213.

Austin, A. T., L. Yahdjian, J. M. Stark, J. Belnap, A. Porporato, et al. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141(2):221-235.

Austin, A. T., and L. Vivanco. 2006. Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442(7102):555-558.

Bääth, E., B. Lundgren, and B. Söderström. 1981. Effects of nitrogen fertilization on the activity and biomass of fungi and bacteria in a podzolic soil. Zentralbl Bakteriol Mikrobiol Hyg I Abt Orig C 2:90-98.

Baker, N. R., and S. D. Allison. 2015. Ultraviolet photodegradation facilitates microbial litter decomposition in a Mediterranean climate. Ecology 96(7):1994-2003.

Berg, B., and C. McClaugherty. 2014. Decomposer organisms. Pages 35-52 en Plant Litter. Springer Berlin Heidelberg.

Blagodatskaya, E. V., and T. H. Anderson. 1998. Interactive effects of pH and substrate quality on the fungal to bacterial ratio and CO2 of microbial communities in forest soils. Soil Biol Biochem 30(10):1269-1274.

Bremner, J. M. 1996. Nitrogen - Total. Part 3, Chapter 37 en D. L. Sparks (ed.). Methods of Soil Analysis. ASA, SSSA, CSSA, Madison WI.

Cabido, M., S. Díaz, and A. Acosta. 1992. La vegetación del Chaco Árido en el oeste de la provincia de Córdoba, Argentina. Doc Phytosociol 14:447-456.

Cabido, M., and J. M. Pacha. 2002. Vegetación y flora de la Reserva Natural Chancaní. Agencia Córdoba Ambiente. Sección C. Publicaciones técnicas.

Conti, G., N. Pérez-Harguindeguy, F. Quètier, L. D. Gorné, P. Jaureguiberry, et al. 2014. Large changes in carbon storage under different land-use regimes in subtropical seasonally dry forests of southern South America. Agric Ecosyst Environ 197:68-76.

Cora, A., and O. A. Bachmeier. 2006. Número mínimo de muestras necesario para un muestreo edáfico en el Chaco Árido de Córdoba (Argentina). Multequina 15(2):97-102.

Cornelissen, J. H. C. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J Ecol 84:573-582.

Coûteaux, M. M., P. Bottner, and B. Berg. 1995. Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63-66.

Crockatt, M. E., and D. P. Bebber. 2015. Edge effects on moisture reduce wood decomposition rate in a temperate forest. Glob Change Biol 21(2):698-707.

Cuchietti, A., E. Marcotti, D. E. Gurvich, A. M. Cingolani, and N. Pérez-Harguindeguy. 2014. Leaf litter mixtures and neighbour effects: low-nitrogen and high-lignin species increase decomposition rate of high-nitrogen and low-lignin neighbours. App Soil Ecol 82:44-51.

Cuchietti, A. 2016. Efectos del uso de la tierra y la biodiversidad funcional sobre el ciclado de la materia orgánica en el centro-oeste de Argentina. Doctor en Ciencias Biológicas. Universidad Nacional de Córdoba. Córdoba. Argentina. Pp. 24-28.

Day, P. R. 1986. Particle fractionation and particle-size analysis. Part I en D. L. Sparks (ed.). Methods of Soil Analysis. ASA, SSSA, CSSA, Madison WI.

Day, T. A., R. Guénon, and C. T. Ruhland. 2015. Photodegradation of plant litter in the Sonoran Desert varies by litter type and age. Soil Biol Biochem 89:109-122.

Deng, L., W. Yan, Y. Zhang, and Z. Shangguan. 2016. Severe depletion of soil moisture following land-use changes for ecological restoration: Evidence from northern China. Forest Ecol Manage 366:1-10.

Di Rienzo, J. A., R. E. Macchiavelli, and F. Casanoves. 2011. Modelos Mixtos en InfoStat. Primera edición. Pp. 197.

Di Rienzo, J. A., F. Casanoves, M. G. Balzarini, L. González, M. Tablada, et al. 2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL: www.infostat.com.ar.

Eviner, V. T., and F. S. Chapin III. 2003. Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annu Rev Ecol Evol Syst 34:455-485.

Flerchinger, G. N., M. L. Reba, T. E. Link, and D. Marks. 2015. Modeling temperature and humidity profiles within forest canopies. Agr Forest Meteorol 213:251-262.

Furey, C., P. A. Tecco, N. Pérez-Harguindeguy, M. A. Giorgis, and M. Grossi. 2014. The importance of native and exotic plant identity and dominance on decomposition patterns in mountain woodlands of central Argentina. Acta Oecol 54:13-20.

Gallo, M. E., A. Porras-Alfaro, K. J. Odenbach, and R. L. Sinsabaugh. 2009. Photo acceleration of plant litter decomposition in an arid environment. Soil Biol Bioch 41(7):1433-1441.

Gorgas, J., and J. Tassile. 2003. Recursos naturales de la provincia de Córdoba. Los suelos. Agencia Córdoba Ambiente SE - INTA, Manfredi, Córdoba.

Harmon, M. E., O. N. Krankina, and J. Sexton. 2000. Decomposition vectors: a new approach to estimating woody detritus decomposition dynamics. Can J For Res 30(1):76-84.

Hättenschwiler, S., A. V. Tiunov, and S. Scheu. 2005. Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191-218.

Hobbie, S. E. 1992. Effects of plant species on nutrient cycling. Trends Ecol Evol 7(10):336-339.

Hortal, S., F. Bastida, J. L. Moreno, C. Armas, C. García, and F. I. Pugnaire. 2015. Benefactor and allelopathic shrub species have different effects on the soil microbial community along an environmental severity gradient. Soil Biol Biochem 88:48-57.

Houspanossian, J., M. Nosetto, and E. G. Jobbágy. 2013. Radiation budget changes with dry forest clearing in temperate Argentina. Glob Change Biol 19(4):1211-1222.

Hoyos, L. E., A. M. Cingolani, M. R. Zak, M. V. Vaieretti, D. E. Gorla, et al. 2013. Deforestation and precipitation patterns in the arid Chaco forests of central Argentina. App Veg Sci 16:260-271.

Jin, T. T., B. J. Fu, G. H. Liu, and Z. Wang. 2011. Hydrologic feasibility of artificial forestation in the semi-arid Loess Plateau of China. Hydrol Earth Syst Sci 15:2519-2530.

Karlin, M. S., U. O. Karlin, R. O. Coirini, G. J. Reati, and R. M. Zapata. 2013. El Chaco Árido. Universidad Nacional de Córdoba.

Kuo, S. 1996. Phosphorus. Part 3 en D. L. Sparks (ed.). Methods of Soil Analysis. ASA, SSSA, CSSA, Madison WI.

Lagerlöf, J., L. Adolfsson, G. Börjesson, K. Ehlers, G. P. Vinyoles, and I. Sundh. 2014. Land-use intensification and agroforestry in the Kenyan highland: impacts on soil microbial community composition and functional capacity. App Soil Ecol 82:93-99.

Lee, X., M. L. Goulden, D. Y. Hollinger, A. Barr, T. A. Black, et al. 2011. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479(7373):384-387.

Longobardi, A. 2008. Observing soil moisture temporal variability under fluctuating climatic conditions. Hydrol. Earth Syst Sc Disc 5(2):935-969.

Martínez-Mena, M., J. Álvarez Rogel, V. Castillo, and J. Albaladejo. 2002. Organic carbon and nitrogen losses influenced by vegetation removal in a semiarid mediterranean soil. Biogeochemistry 61:309-321.

Ndagurwa, H. G., J. S. Dube, and D. Mlambo. 2015. Decomposition and nutrient release patterns of mistletoe litters in a semi‐arid savanna, southwest Zimbabwe. Austral Ecol 40(2):178-185.

Nelson, D. W., and L. E. Sommers. 1996. Total Carbon, Organic Carbon, and Organic Matter. Part 3, Chemical Methods. En D. L Sparks (ed.). Methods of Soil Analysis. ASA, SSSA, CSSA, Madison WI.

O’Lear, H. A., T. R. Seastedt, J. M. Briggs, J. M. Blair, et al. 1996. Fire and topographic effects on decomposition rates and nitrogen dynamics of buried wood in tall grass prairie. Soil Biol Bioch 28:322-329.

Orwin, K. H., D. A. Wardle, G. Laurence, and L. G. Greenfield. 2006. Ecological consequences of carbon substrate identity and diversity in a laboratory study. Ecology 87:580-93.

Paudel, E., G. G. Dossa, J. Xu, and R. D. Harrison. 2015. Litterfall and nutrient return along a disturbance gradient in a tropical montane forest. For Ecol Manag 353:97-106.

Pérez-Harguindeguy, N., S. Díaz, J. H. Cornelissen, and M. Cabido. 1997. Comparación experimental de la tasa de descomposición foliar de especies vegetales del centro-oeste de Argentina. Ecol Austral 7:87-94.

Pérez-Harguindeguy, N., S. Díaz, E. Garnier, S. Lavorel, H. Poorter, et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot 61:167-234.

Prescott, C. E. 2010. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101(1-3):133-149.

Quested, H., O. Eriksson, C. Fortunel, and E. Garnier. 2007. Plant traits relate to whole-community litter quality and decompositon following land use change. Func Ecol 21:1016-1026.

Rundel, P., and W. Jarrell. 1989. Water in the environment. Pp. 29-56 en R. W. Pearcy, J. Ehleringer, H. A. Mooney and P. Rundel. Plant Physiological Ecology. Chapman y Hall, New York, New York.

Schilling, J. S., A. Ayres, J. T. Kaffenberger, and J. S. Powers. 2015. Initial white rot type dominance of wood decomposition and its functional consequences in a regenerating tropical dry forest. Soil Biol Biochem 88:58-68.

Seidelmann, K. N., M. Scherer-Lorenzen, and P. A. Niklaus. 2016. Direct vs. Microclimate-Driven Effects of Tree Species Diversity on Litter Decomposition in Young Subtropical Forest Stands. PloS One 11(8):e0160569.

Smith, A. P., E. Marín‐Spiotta, and T. Balser. 2015. Successional and seasonal variations in soil and litter microbial community structure and function during tropical postagricultural forest regeneration: a multiyear study. Glob Chang Biol 21(9):3532-3547.

Sokal, R. R., and F. J. Rohlf. 1995. Biometry. W.H. Freeman and Company, New York.

Steinberger, Y., A. Shmida, and W. G. Whitford. 1990. Decomposition along a rainfall gradient in the Judean desert, Israel. Oecologia 82(3):322-324.

Thomas, G. W. 1996. Soil pH and soil acidity. Part 3. Chapter 16. En D. L. Sparks (ed.). Methods of Soil Analysis. ASA, SSSA, CSSA, Madison WI.

Vaieretti, M. V., N. Pérez Harguindeguy, D. E. Gurvich, A. M. Cingolani, and M. Cabido. 2005. Decomposition dynamics and physico-chemical leaf quality of abundant species in a montane woodland in central Argentina. Plant Soil 278:223-234.

Vaieretti, M. V., A. M. Cingolani, N. Pérez-Harguindeguy, D. E. Gurvich, and M. Cabido. 2010. Does decomposition of standard materials differ among grassland patches maintained by livestock? Austral Ecol 35(8):935-943.

Vanderbilt, K. L., C. S. White, O. Hopkins, and J. A. Craig. 2008. Aboveground decomposition in arid environments: results of a long-term study in central New Mexico. J Arid Environ 72(5):696-709.

Vivanco, L., and A. T. Austin. 2006. Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America. Oecologia 150(1):97-107.

Vivanco, L., and A. T. Austin. 2008. Tree species identity alters forest litter decomposition through long term plant and soil interactions in Patagonia, Argentina. J Ecol 96(4):727-736.

Yates, C. J., D. A. Norton, and R. J. Hobbs. 2000. Grazing effects on plant cover, soil and microclimate in fragmented woodlands in south‐western Australia: implications for restoration. Austral Ecol 25(1):36-47.

Zak, M. R., M. Cabido, D. Cáceres, and S. Díaz. 2008. What drives accelerated land cover change in central Argentina? Synergistic consequences of climatic, socioeconomic, and technological factors. Environ Manage 42(2):181-189.

Zhang, D., D. Hui, and G. Zhou. 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J Plant Ecol 1(2):85-93.

Zuloaga, F. O., O. Morrone, and M. J. Belgrano. 2008. Catalogue of the vascular plants of the southern cone (Argentina, southern Brazil, Chile, Paraguay and Uruguay). Volume 2: Dicotyledoneae: Acanthaceae-Fabaceae (Abarema-Schizolobium) (Pp. xx+-985). Missouri Botanical Garden Press.

Uso de la tierra y ambiente local de descomposición en el Chaco Semiárido de Córdoba, Argentina

Descargas

Publicado

2017-09-11

Cómo citar

Cuchietti, A., Marcotti, E., Conti, G., Casanoves, F., Mazzarino, M. J., Vaieretti, M. V., Díaz, S., & Pérez-Harguindeguy, N. (2017). Uso de la tierra y ambiente local de descomposición en el Chaco Semiárido de Córdoba, Argentina. Ecología Austral, 27(3), 326–339. https://doi.org/10.25260/EA.17.27.3.0.434