Predicción de la descomponibilidad de la hojarasca: una evaluación exploratoria de los rasgos foliares, los rasgos de la hojarasca y las propiedades espectrales en seis especies herbáceas mediterráneas

Autores/as

  • Natalia Pérez Harguindeguy Editora general Ecología Austral Asociación Argentina de Ecología
  • Jacques Cortez
  • Eric Garnier
  • Dominique Gillon
  • María Poca

DOI:

https://doi.org/10.25260/EA.15.25.1.0.52

Resumen

Ecología Austral, 25:54-64 (2015)

Algunos trabajos han explorado métodos fáciles y rápidos de evaluar la decomponibilidad de la broza de grandes conjuntos de especies. Aquí evaluamos tres de los más utilizados en seis especies mediterráneas herbáceas de diferentes familias y formas de vida: (1) ‘caracteres de hojas verdes’: caracteres de hojas vivas relacionadas a las estrategias de vida de las plantas; (2) ‘caracteres de la broza’: respiración de la broza durante incubaciones in vitro y propiedades iniciales de la broza; (3) ‘propiedades espectrales de las hojas y de la broza’: características espectrales (NIR) de las hojas verdes y de la broza. Analizamos las relaciones entre estos métodos y su consistencia para evaluar la tasa de descomposición de la broza en el campo. Las propiedades espectrales de hojas verdes fueron las más precisas para predecir la descomponibilidad a campo, seguidas por el contenido de materia seca de las hojas (LDMC) y el contenido inicial de compuestos no lábiles de la broza. La descomponibilidad in vitro se correlacionó marginalmente con la descomponibilidad a campo. La selección entre los predictores puede depender, entonces, de los instrumentos disponibles. LDMC es el método más económico y fácil de medir para grandes conjuntos de especies que, a su vez, fue constante dentro de las especies. Alternativamente, en el caso de tener el equipamiento y las calibraciones disponibles, los espectros NIR de las hojas verdes y de la broza inicial representan un método rápido para estimar la descomponibilidad y calidad de la broza al mismo tiempo. Nuestros resultados confirman evidencias previas que para las especies de sistemas semiáridos caracteres estructurales como LDMC y el contenido de compuestos no lábiles son propiedades importantes en el control de la descomponibilidad de la broza. La validez de nuestras conclusiones para un rango mayor de especies debería probarse en futuros estudios.

Citas

ABER, JD; JM MELILLO & CA MCCLAUGHERTY. 1990. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil matter formation from initial fine litter chemistry in temperate forest ecosystems. Canad. J. Bot., 68:2201-2208.

AERTS, R & H DE CALUWE. 1997. Initial litter respiration as indicator for long-term leaf litter decomposition of Carex species. Oikos, 80:353-361.

AL HAJ KHALED, R; M DURU; JP THEAU; S PLANTEREUX & P CRUZ. 2005. Variation in leaf traits through seasons and N-availability levels and its consequences for ranking grassland species. J. Veg. Sci., 16:391-398.

CORNELISSEN, JHC. 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol., 84:573-582.

CORNELISSEN, JHC; N PÉREZ-HARGUINDEGUY; S DÍAZ; JP GRIME; B MARZANO; M CABIDO; F VENDRAMINI & B CERABOLINI. 1999. Leaf structure and defence control litter decomposition rate across species and life forms in regional floras of two continents. New Phytol., 143:191-200.

CORNWELL, WK; JHC CORNELISSEN; K AMATANGELO; E DORREPAAL; VT EVINER ET AL. 2008. The leaf economic trait spectrum drives litter decomposition rates in regional floras worldwide. Ecol. Lett., 11:1065-1071.

CORTEZ, J; J DEMARD; P BOTTNER & L JOCTEUR MONROZIER. 1996. Decomposition of Mediterranean leaf litters: a microcosm experiment investigating relationships between decomposition rates and litter quality. Soil Biol. Biochem., 28:443-452.

DEBUSSCHE, M; J LEPART & A DERVIEUX. 1999. Mediterranean landscapes changes: evidence from old postcards. Global Ecol. Biogeogr., 8:3-15.

DIJKSTRA, P & H LAMBERS. 1989. Analysis of specific leaf area and photosynthesis of two 7 inbred lines of Plantago major differing in relative growth rate. New Phytologist, 113:283-290.

FORTUNEL, C; E GARNIER; R JOFFRE; E KAZAKOU; H QUESTED ET AL. 2009. Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology, 90:598-611.

FRITZE H; P JÄRVINEN & R HIUKKA. 1994. Near-infrared characteristics of forest humus are correlated with soil respiration and microbial biomass in burnt soils. Biol. Fert. Soils, 18:80-82.

GALLARDO, A & J MERINO. 1993. Leaf decomposition in 2 Mediterranean ecosystems of Southwest Spain - influence of substrate quality. Ecology, 74:152-161.

GARNIER, E & G LAURENT. 1994. Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species. New Phytol., 128:725-736.

GARNIER, E; J CORTEZ; G BILLÈS; ML NAVAS; C ROUMET ET AL. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85:2630-2637.

GILLON, D; R JOFFRE & P DARDENNE. 1993. Predicting the stage of decay of decomposing leaves by near-infrared reflectance spectroscopy. Canad. J. Forest Res., 23:2552-2559.

GILLON, D; R JOFFRE & A IBRAHIMA. 1999. Can litter decomposability be predicted by near infrared reflectance spectroscopy? Ecology, 80:175-186.

GRIME, JP; JHC CORNELISSEN; K THOMPSON & JG HODGSON. 1996. Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves. Oikos, 77:489-494.

JOFFRE, R; D GILLON; P DARDENNE; R AGNEESSENS & R BISTON. 1992. The use of near-infrared reflectance spectroscopy in litter decomposition studies. Ann. Sci. For., 49:481-488.

JOFFRE, R; GI ÅGREN; D GILLON & E BOSATTA. 2001. Organic matter quality in ecological studies: theory meets experiment. Oikos, 93:451-458.

KAZAKOU, E; F VILE; B SHIPLEY; C GALLETS & E GARNIER. 2006. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Func. Ecol., 20:21-30.

KAZAKOU, E, C VIOLLE; C ROUMET; C PINTOR; O GIMENEZ & E GARNIER. 2009. Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply. Ann. bot., 104:1151-1161.

MCCLAUGHERTY, CA & B BERG. 1987. Holocellulose, lignin and nitrogen levels as rate-regulating factors in late stages of forest litter decomposition. Pedobiologia, 30:101-112.

MCLELLAN, TM; M MARTIN; JD ABER; JM MELILLO; KJ NADELHOFFER & B DEWAY. 1991. Comparison of wet chemistry and near infrared reflectance measurements of carbon fraction chemistry and nitrogen concentration of forest foliage. Canad. J. Forest Res., 21:1689-1694.

MCTIERNAN, KB; MM CÔUTEAUX; B BERG; MP BERG; R CALVO DE ANTA ET AL. 2003. Changes in chemical composition of Pinus sylvestris needle litter during decomposition along a European coniferous forest climatic transect. Soil Biol. Biochem., 35:801-812.

MELILLO, JM; JD ABER & JF MURATORE. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 63:571-584.

NORBY, RJ; MF COTRUFO; P INESON; EG O'NEILL & JG CANADELL. 2001. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia, 127:153-165.

OLSON, JS. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology, 44:322-331.

OSBORNE, BG; T FEARN & PH HINDLE. 1993. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis. Longman Scientist and Technical, Harlow, UK. 277 pp.

-364.

PALM, CA & AP ROWLAND. 1997. A minimum dataset for characterization of plant quality for decomposition. In: Cadisch. G., Giller K.E. (Eds.), Driven by Nature: plant litter quality and decomposition. CAB International-University Press. pp 379-392.

PÉREZ-HARGUINDEGUY, N; S DÍAZ; E GARNIER; S LAVOREL; H POORTER; P JAUREGUIBERRY ET AL. 2013. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot., 61:167-234.

POCA, M.; N PÉREZ-HARGUINDEGUY; MV VAIERETTI & AM CINGOLANI. 2014. Descomposición y calidad físico-química foliar de 24 especies dominantes de los pastizales de altura de las sierras de Córdoba, Argentina. Ecología Austral, 24:249-257.

POORTER, H & M BERGKOTTE. 1992. Chemical composition of 24 wild species differing in 14 relative growth rate. Plant, Cell & Environment, 15:221-229.

QUESTED, H; O ERIKSSON; C FORTUNEL & E GARNIER. 2007. Plant traits relate to whole-community litter quality and decompositon following land use change. Func. Ecol., 21:1016-1026.

RYSER, P & P URBAS. 2000. Ecological significance of leaf life span among Central European grass species. Oikos, 91:41-50.

SHENK, JS & MO WESTERHAUS. 1991a. ISI NIRS-2 software for near-infrared instruments. Infrasoft International.

SHENK, JS & MO WESTERHAUS. 1991b. Population definition, sample selection, and calibration procedures for near-infrared reflectance spectroscopy. Crop Sci., 31: 469-474.

SHENK, JS & MO WESTERHAUS. 1996. Calibration the ISI way. In: Davies A.M.C., Williams P., (Eds.), Near infrared spectroscopy: the future waves. NIR publications. pp 198-202.

TAYLOR, BR; D PARKINSON & WFJ PARSONS. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70: 97-104.

WINDHAM, WR; DR MERTENS & FE II BARTON. 1989. Protocol for NIRS calibration: sample selection and equation development and validation. In: Marten G.C. Shenk J.S., Barton. F.E. II (Eds.), Near infrared reflectance spectroscopy: analysis of forage quality. Agricultural handbook 643, US Department of Agriculture. pp 96-103.

Descargas

Publicado

2015-04-01

Cómo citar

Pérez Harguindeguy, N., Cortez, J., Garnier, E., Gillon, D., & Poca, M. (2015). Predicción de la descomponibilidad de la hojarasca: una evaluación exploratoria de los rasgos foliares, los rasgos de la hojarasca y las propiedades espectrales en seis especies herbáceas mediterráneas. Ecología Austral, 25(1), 54–64. https://doi.org/10.25260/EA.15.25.1.0.52