El potencial de colonización micorrícico-arbuscular varía entre prácticas agrícolas y sitios en diferentes áreas geográficas de la Región Pampeana
DOI:
https://doi.org/10.25260/EA.18.28.3.0.696Resumen
Para evaluar las comunidades fúngicas es necesario identificar las especies presentes, cuantificar la densidad de propágulos y también determinar su infectividad. En este estudio se evaluó, mediante un ensayo experimental, el potencial de colonización micorrícico-arbuscular (PCM) de tres suelos bajo diferentes sistemas de cultivo (pastizal natural, rotación de cultivo y monocultivo de soja en siembra directa), en cuatro sitios ubicados en diferentes áreas geográficas de la Región Pampeana (Bengolea, Monte Buey, Pergamino y Viale), y se usó a Vicia villosa Roth como planta testigo. Los usos del suelo y los sitios tuvieron efecto sobre el PCM. Como esquema de rotación, el monocultivo mostró el mayor potencial para colonizar las raíces de Vicia villosa con respecto al pastizal natural, y la rotación de cultivo en la mayoría de las combinaciones planteadas, a diferencia de lo encontrado antes para los mismos suelos, donde el monocultivo disminuyó la riqueza de las comunidades micorrícicas determinadas por la densidad y la diversidad de esporas. Estos resultados remarcan las limitaciones de los paradigmas de interpretación de los sistemas simbióticos generados a partir de ensayos en condiciones controladas y el gran desconocimiento que aún existe sobre el funcionamiento de las interacciones planta-microorganismo en el suelo. Alternativamente, estos resultados podrían ser consecuencia de un efecto inhibitorio de la mayor fertilidad N-P en los suelos con rotación de cultivo respecto de los suelos bajo monocultivo debido a un manejo de reposición histórica de nutrientes por fertilización, ausente en los casos de monocultivo. El uso de una única especie vegetal en los ensayos de infectividad también podría estar sesgando los resultados, ya que limitaría, por especificidad de hospedador, su expresión en la totalidad de la comunidad micorrícica del suelo.
https://doi.org/10.25260/EA.18.28.3.0.696
Citas
Aguilar Fernández, M., V. J. Jaramillo, L. Varela Fregoso, and M. E. Gavito. 2009. Short term consequences of slash-and-burn practices on the arbuscular mycorrhizal fungi of a tropical dry forest. Mycorrhiza 19:179-186.
Alguacil, M. M., E. Lumini, A. Roldán, J. R. Salinas-García, P. Bonfante, and V. Bianciotto. 2008. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecol Appl 18:527-536.
Bedini, S., L. Avio, C. Sbrana, A. Turrini, P. Migliorini, C. Vazzana, and M. Giovannetti. 2013. Mycorrhizal activity and diversity in a long-term organic Mediterranean agroecosystem. Biol Fertil Soils 49:781-790
Brundrett, M., N. Bougher, B. Dell, T. Grove, and N. Malajczuk. 1996. Working with mycorrhizal in forestry and agriculture. ACIAR Monograph 32.
Burrows, R. 2014. Glomalin Production and Infectivity of Arbuscular-Mycorrhizal Fungi in Response to Grassland Plant Diversity. AM J Plant Sci 5:103-111.
Chagnon, P. L., R. L. Bradley, H. Maherali, and J. N. Klironomos. 2013. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 9:484-491.
Clapp, J., J. Young, J. Merryweather, and A. Fitter. 1995. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259-265.
Cofré, M. N., A. E. Ferrari, A. Becerra, L. Domínguez, L. G. Wall, and C. Urcelay. 2017. Effects of cropping systems under no-till agriculture on arbuscular mycorrhizal fungi in Argentinean Pampas. Soil Use Manage 33:364-378.
Cuenca G., Z. De Andrade, M. Lovera, L. Fajardo, E. Menenses, M. Marques, and R. Machuca. 2003. Pre-selección de plantas nativas y producción de inóculos de hongos micorrízicos arbusculares (HMA) de relevancia en la rehabilitación de áreas degradadas de la Gran Sabana, estado Bolívar, Venezuela. Ecotropicos (Venezuela) 16:27-40.
Davison, J., M. Öpik, M. Zobel, M. Vasar, M. Metsis, and M. Moora. 2012. Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PloS one 7: e41938.
Davison, J., M. Moora, M. Öpik, L. Adholeya, A. Ainsaar, Bâ S. Burla, A. G. Diedhiou, I. Hiiesalu, T. Jairus, N. C. Johnson, A. Kane, K. Koorem, M. Kochar, C. Ndiaye, M. Pärtel, Ü. Reier, Ü. Saks, R. Singh, M. Vasar, and M. Zobel. 2015. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 28:970-973.
Díaz, G., and M. Honrubia. 1993. Infectivity of mine soils from southeast Spain. II. Mycorrhizal population levels in spoilt sites. Mycorrhiza 4:85-88.
Druille, M., M. N. Cabello, P. A. García Parisi, R. A. Golluscio, and M. Omacini. 2015. Glyphosate vulnerability explains changes in root-symbionts propagules viability in pampean grasslands. Agric Ecosyst Environ 202:48-55.
Duval, M. E., J. A. Galantini, J. O. Iglesias, S. Canelo, J. M. Martínez, and L. Wall 2013. Analysis of organic fractions as indicators of soil quality under natural and cultivated systems. Soil Till Res 131:11-19.
Duval, M. E., J. A. Galantini, J. M. Martínez, F. M. López, and L. G. Wall. 2015. Evaluación de la calidad física de los suelos de la región pampeana: efecto de las prácticas de manejo. Ciencias Agrarias XXV- 15:033-043.
Duponnois, R., C. Plenchette, J. Thioulouse, and P. Cadet. 2001. The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal. Appl Soil Ecol 17:239-251.
Faggioli, V. S., and M. N. Cabello. 2013. Diversidad de hongos formadores de micorrizas en un gradiente ambiental y de uso de suelo de la provincia de Córdoba Estación Experimental Agropecuaria Marcos Juárez, INTA, 1-6.
Figuerola, E. L. M., L. D. Guerrero, S. M. Rosa, L. Simonetti, M. E. Duval, J. A. Galantini, J. C. Bedano, L. G. Wall, and L. Erijman. 2012. Bacterial Indicator of Agricultural Management for Soil under No-Till Crop Production. PLoS ONE 7: e51075.
Figuerola, E. L. M., L. D. Guerrero, D. Türkowsky, L. G. Wall, and L. Erijman. 2014. Crop monoculture rather than agriculture reduces the spatial turnover of soil bacterial communities at a regional scale. Environ Microbiol DOI: 10.1111/1462-2920.12497.
Gai, J., W. Gao, L. Liu, Q. Chen, G. Feng, J. Zhang, P. Christie, and X. Li. 2015. Infectivity and community composition of arbuscular mycorrhizal fungi from different soil depths in intensively managed agricultural ecosystems. J Soils Sed 15:1200-1211.
Gange, A. C., and R. L. Ayres. 1999. On the relation between arbuscular mycorrhizal colonization and plant 'benefit'. Oikos 87:615-621.
Ge, Y., J. He, Y. Zhu, J. Zhang, Z. Xu, L. Zhang, and Y. Zheng. 2008. Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? The ISME Journal 2:254-264.
Giovannetti, M., and B. Mosse. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489-500.
González-Cortés J. C., M. Vega-Fraga, L. Varela-Fregoso, M. Martínez-Trujillo, Y. Carreón-Abud, and M. E. Gavito. 2012. Arbuscular mycorrhizal fungal (AMF) communities and land use change: the conversion of temperate forests to avocado plantations and maize fields in central Mexico. Fungal Ecol 5:16-23.
Grace, C., and D. P. Stribley. 1991. A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160-1162.
Grilli, G., C. Urcelay, S. Longo, and L. Galetto. 2014. Mycorrhizal fungi affect plant growth: experimental evidence comparing native and invasive hosts in the context of forest fragmentation. Plant Ecol 215:1513-1525.
Hart, M. M., and R. J. Reader. 2002. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335-344
Hazard, C., P. Gosling, C. J. van der Gast, D. T. Mitchell, F. N. Doohan, and G. Bending. 2013. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. The ISME Journal 7:498-508.
Hedlund, K., I. Santa Regina, W. Van der Putten, J. Lepš, T. Díaz, G. Korthals, S. Lavorel, V. Brown, D. Gormsen, and S. Mortimer. 2003. Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above‐belowground time lags. Oikos 103:45-58.
Imaz, P. A., P. A. Barbieri, H. E. Echeverría, H. R. Sainz Rozas, and F. Covacevich. 2014. Indigenous mycorrhizal fungi from Argentina increase Zn nutrition of maize modulated by Zn fertilization. Soil Environm 33(1):23-32.
Irrazabal, G., S. Velázquez, and M. N. Cabello. 2004. Infectividad y diversidad de HMA de la rizosfera de los talares de Magdalena, provincia de Buenos Aires, Argentina. Bol Micol 19:49-57.
Jansa, J., A. Mozafar, G. Kuhn, T. Anken, R. Ruh, I. Sanders, and E. Frossard. 2003. Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164-1176.
Jansa, J., A. Wiemken, and E. Frossard. 2006. The effects of agricultural practices on arbuscular mycorrhizal fungi. Geo Soc, London, Special Publications 26:89-115.
Jansa, J., H. R. Oberholzer, and S. Egli. 2009. Environmental determinants of the arbuscular mycorrhizal fungal infectivity of Swiss agricultural soils. Eur J Soil Biol 45:400-408.
Jansa, J., A. Erb, H. R. Oberholzer, P. Šmilauer, and S. Egli. 2014. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23:2118-2135.
Johnson, N. C., P. J. Copeland, R. K. Crookston, and F. Pfleger. 1992. Mycorrhizae: possible explanation for yield decline with continuous corn and soybean. Agronomy Journal 84:387-390.
Johnson, N., J. Graham, and F. Smith. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575-585.
Johnson, N. C., G. W. Wilson, M. A. Bowker, J. A. Wilson, and R. M. Miller. 2010. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. P Natl Acad Sci USA 107(5):2093-2098.
Karasawa, T., Y. Kasahara, and M. Takebe. 2002. Differences in growth responses of maize to preceding cropping caused by fluctuation in the population of indigenous arbuscular mycorrhizal fungi. Soil Biol Biochem 34:851-857.
Lehmann, A., E. K. Barto, J. R. Powell, M. C. Rillig. 2012. Mycorrhizal responsiveness trends in annual crop plants and their wild relatives - a meta-analysis on studies from 1981 to 2010. Plant Soil 355:231-250.
Longo, S., E. Nouhra, B. T. Goto, R. L. Berbara, and C. Urcelay. 2014. Effects of fire on arbuscular mycorrhizal fungi in the Mountain Chaco Forest. For Ecol Manag 315:86-94.
Lugo, M., and M. N. Cabello. 2002. Native arbuscular mycorrhizal fungi (AMF) from mountain grassland (Córdoba, Argentina) I. Seasonal variation of fungal spore diversity. Mycologia 94:579-586.
Maherali, H., and J. N. Klironomos. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746-1748.
Maherali, H., and J. N. Klironomos. 2012. Phylogenetic and Trait-Based Assembly of Arbuscular Mycorrhizal Fungal Communities. PLoS ONE 7(5): e36695.
Mangan, S. A., A. H. Eom, G. H. Adler, J. B. Yavitt, and E. A. Herre. 2004. Diversity of arbuscular mycorrhizal fungi across a fragmented forest in Panama: insular spore communities differ from mainland communities. Oecologia 141:687-700.
Martínez, T. N., and N. C. Johnson. 2010. Agricultural management influences propagule densities and functioning of arbuscular mycorrhizas in low- and high-input agroecosystems in arid environments. Appl Soil Ecol 46:300-306.
Menéndez, A. B., J. M. Scervino, and A. M. Godeas. 2001. Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province, Argentina. Biol Fert Soils 33:373-381.
Miller, M. H. 2000. Arbuscular mycorrhizae and the phosphorus nutrition of maize: A review of Guelph studies. Can J Plant Sci 80:47-52.
Nadian, H., S. E. Smith, A. M. Alston, and R. S. Murray. 1997. Effects of soil compaction on plant growth, phosphorus uptake and morphological characteristics of vesicular-arbuscular mycorrhizal colonization of Trifolium subterraneum. New Phytol 135:303-311.
Newbold, T., L. N. Hudson, S. L. Hill, S. Contu, I. Lysenko, R. A. Senior, L. Börger, D. J. Bennett, A. Choimes, B. Collen, J. Day, A. De Palma, S. Díaz, S. Echeverría-Londoño, M. J. Edgar, A. Feldman, M. Garon, M. L. Harrison, T. Alhusseini, D. J. Ingram, Y. Itescu, J. Kattge, V. Kemp, L. Kirkpatrick, M. Kleyer, D. L. Correia, C. D. Martin, S. Meiri, M. Novosolov, Y. Pan, H. R. Phillips, D. W. Purves, A. Robinson, J. Simpson, S. L. Tuck, E. Weiher, H. J. White, R. M. Ewers, G. M. Mace, J. P. Scharlemann, and A. Purvis . 2015. Global effects of land use on local terrestrial biodiversity. Nature 520:45-50.
Oehl, F., E. Laczko, A. Bogenrieder, K. Stahr, R. Bösch, M. van der Heijden, and E. Sieverding. 2010. Soil type and land use intensity determine the composition of arbuscular mycorrhizal fungal communities. Soil Biol Biochem 42:724-738.
Pérez, M., and C. Urcelay. 2009. Differential growth response to arbuscular mycorrhizal fungi and plant density in two wild plants belonging to contrasting functional types. Mycorrhiza 19:517-523.
Plenchette, C., R. Perrin, and P. Duvert. 1989. The concept of soil infectivity and a method for its determination as applied to endomycorrhizas. Can J Bot 67:112-115
Purin, S., O. Klauberg-Filho, and S.L. Sturmer. 2006. Mycorrhizae activity. and diversity in conventional and organic apple orchards from. Brazil. Soil Biol Biochem 38:1831-1839.
Ryan, M. H., and J. H. Graham. 2018. Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol DOI: 10.1111/nph.15308.
Redecker, D., R. Kodner, and L. E. Graham. 2000. Glomalean fungi from the Ordovician. Science 289:1920-1921.
Renzi, J. P. 2009. Efecto de la estructura de cultivo y grado de madurez a cosecha sobre el rendimiento y la calidad de semillas de Vicia sativa L. y V. villosa Roth., bajo riego. Tesis de Magister en Ciencias Agrarias. Universidad Nacional del Sur. Pp. 126.
Sala, O. E., F. S. Chapin, J. J. Armesto, E. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, and A. Kinzig. 2000. Global biodiversity scenarios for the year 2100. Science 287:1770-1774.
Sanders, I. R. 2004. Plant and arbuscular mycorrhizal fungal diversity- are we looking at the relevant levels of diversity and are we using the right techniques? New Phytol 16:415-418.
Schalamuk, S., S. Velázquez, H. Chidichimo, and M. Cabello. 2006. Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage. Mycologia 98:16-22.
Schalamuk, S., and M. N. Cabello. 2010a. Effect of Tillage Systems on the Arbuscular Mycorrhizal Fungi (AMF) Propagule Bank in Soils. Pp.162-170 in A. Arya and A. Perelló (eds.). Management of Fugal Plant Pathogens: Current Trends and Progress. Chapter 13. CAB International (publ.).
Schalamuk, S., and M. N. Cabello. 2010b. Arbuscular mycorrhizal fungal propagules from tillage and no-tillage systems: possible effects on Glomeromycota diversity. Mycologia 102:261-268.
Smith, S. E., and D. J. Read. 2008. Mycorrhizal symbiosis. 2nd ed. Academic press Ltd, London.
Soteras, F., D. Renison, and A. G. Becerra. 2014. Restoration of high-altitude forests in an area affected by a wildfire: Polylepis australis Bitt. seedlings performance after soil inoculation. Trees 28(1):173-182
Soteras, F., G. Grilli, N. Cofré, N. Marro, and A. Becerra. 2015. Arbuscular mycorrhizal fungal composition in high montane forests with different disturbance histories in Central Argentina. Appl Soil Ecol 85:30-37.
Stürmer, S. L., and J. O. Siqueira. 2011. Species richness and spore abundance of arbuscular mycorrhizal fungi across distinct land uses in Western Brazilian Amazon. Mycorrhiza 21:255-267.
Treseder, K. K. 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol 164:347-355.
van der Heijden, M. G. A., Bardgett, R. D., and N. M. van Straalen. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters 11:296-310.
Vestberg, M., K. Saari, S. Kukkonen, and T. Hurme. 2005. Mycotrophy of crops in rotation and soil amendment with peat influence the abundance and effectiveness of indigenous arbuscular mycorrhizal fungi in field soil. Mycorrhiza 15:447-458.
Wardle, D. A. 2006. The influence of biotic interactions on soil biodiversity. Ecology Letters 9:870-886.
Yang, H. S., Y. Y. Zang, Y. G. Yuan, J. J. Tang, and X. Chen. 2012. Selectivity by host plants affects the distribution of arbuscular mycorrhizal fungi: evidence from ITS rDNA sequence metadata. BMC Evol Biol 12:50.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2018 Noelia Cofré, Carlos Urcelay, Luis G. Wall, Laura Domínguez, Alejandra Becerra
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Las/os autoras/es conservan sus derechos de autoras/es: 1) cediendo a la revista el derecho a su primera publicación, y 2) registrando el artículo publicado con una Licencia de Atribución de Creative Commons (CC-BY 4.0), lo que permite a autoras/es y terceros verlo y utilizarlo siempre que mencionen claramente su origen (cita o referencia incluyendo autoría y primera publicación en esta revista). Las/os autores/as pueden hacer otros acuerdos de distribución no exclusiva siempre que indiquen con claridad su origen, así como compartir y divulgar ampliamente la versión publicada de su trabajo.