Efecto del incremento de agua en la fenología, productividad y herbivoría de Fuchsia boliviana C. (Onagraceae) en el noroeste argentino

Efecto del incremento de agua en la fenología, productividad y herbivoría de Fuchsia boliviana C. (Onagraceae) en el noroeste argentino

Silvia B. Lomáscolo, Ana C. Monmany, Julieta Magro, Pablo Suárez, Franco Andrada

Resumen


La disponibilidad de agua puede afectar la productividad de una planta ya que condiciona su habilidad para reproducirse o defenderse. Examinamos a campo el efecto del aumento de agua sobre a) la producción de flores, b) la producción de frutos y c) la herbivoría de Fuchsia boliviana (Onagraceae) en el bosque de Yungas del noroeste argentino. Seleccionamos 10 pares plantas de tamaño similar, separadas al menos 5 m entre sí, y regamos una planta del par con 20 L de agua dos veces por semana entre septiembre y diciembre de 2016. Contamos el número de flores y frutos de todas las plantas dos veces por semana. Cuantificamos la herbivoría una sola vez en cinco hojas por planta en base a fotografías. No encontramos diferencias en el número de flores o frutos ni en la herbivoría entre plantas de ambos tratamientos. Observamos una tendencia a que las plantas regadas comenzaran a florecer más tarde y con más intensidad que las plantas no regadas. Se discuten algunas posibilidades para explicar por qué el incremento de agua no afectó la reproducción ni la tasa de daño en Fuchsia boliviana.

https://doi.org/10.25260/EA.19.29.2.0.806


Texto completo:

PDF (English)

Referencias


Aldaz, J. C., and H. Politécnico. 2011. Avances taxonómicos y de propagación del género Fuchsia en Ecuador. Q'EUÑA 4:39-45. https://doi.org/10.1002/j.1537-2197.1986.tb10902.x.

Averett, J. E., W. J. Hahn, P. E. Berry, and P. H. Raven. 1986. Flavonoids and flavonoid evolutino in Fuchsia (Onagraceae). American Journal of Botany 73:1525-1534.

Bernacchi, C. J., and A. Vanloocke. 2015. Terrestrial Ecosystems in a Changing Environment: A Dominant Role for Water. Annual Review in Plant Biology 66:599-622. https://doi.org/10.1146/annurev-arplant-043014-114834.

Berry, E., B. A. Stein, N. L. Street, and J. Nwicke. 1988. Fuchsia pachyrrhiza (Onagraceae), a Tuberous New Species and Section of Fuchsia from Western Peru. Systematic Botany 13:483-492. https://doi.org/10.2307/2419193.

Berry, P. E. 1982. The Systematics and Evolution of Fuchsia Sect. Fuchsia (Onagraceae). Annals of the Missouri Botanical Garden. Missouri Botanical Garden 69:1-198. https://doi.org/10.2307/2398789.

Berry, P. E., W. J. Hahn, K. J. Sytsma, J. C. Hall, and A. Mast. 2004. Phylogenetic relationships and biogeography of Fuchsia (Onagraceae) based on noncoding nuclear and chloroplast DNA data. 91:601-614. American Journal of Botany 91:601-614. https://doi.org/10.3732/ajb.91.4.601.

Breedlove, D. E., P. E. Berry, and P. H. Raven. 1982. The Mexican and Central American Species of Fuchsia (Onagraceae) Except for Sect. Encliandra. Annals of the Missouri Botanical Garden 69:209-234. https://doi.org/10.2307/2398791.

Brock, M. T., R. L. Winkelman, M. J. Rubin, C. E. Edwards, B. E. Ewers, and C. Weinig. 2017. Allocation to male vs female floral function varies by currency and responds differentially to density and moisture stress. Heredity 119:349-359. https://doi.org/10.1038/hdy.2017.41.

Cabrera, A. L., and A. Willink. 1980. Biogeografía de América Latina. Secretaría General de la Organización de los Estados Americanos, Programa Regional de Desarrollo Científico y Tecnológico. 2da ed. Pp. 122.

Caranqui Aldaz, J. 2011. Avances taxonómicos y de propagación del género Fuchsia en Ecuador - Taxonomic and propagation advances of the genus Fuchsia in Ecuador. Q’EUÑA 4:39-45.

Carlquist, S. 1975. Wood anatomy of Onagraceae, with notes on alternative modes of photosynthate movement in dicotyledon woods. Annals of the Missouri Botanical Garden 62:386-424. https://doi.org/10.2307/2395205.

Carroll, A. B., S. G. Pallardy, and C. Galen. 2001. Drought stress, plant water status, and floral trais expression in fireweed, Epilobium angustifolium (Onagraceae). American Journal of Botany 88:438-446. https://doi.org/10.2307/2657108.

Case, A. L., and T. -L. Ashman. 2005. Sex-specific Physiology and its Implications for the Cost of Reproduction. Pp. 126-154 in E. G. Reekie and F. A. Bazzaz (eds.). Reproductive allocation in plants. Elsevier Academic Press, London, UK. https://doi.org/10.1016/B978-012088386-8/50005-3.

Chang-Yang, C. -H., I. -F. Sun, C. Tsai, C. Lu, and C. Hsieh. 2016. ENSO and frost codetermine decade-long temporal variation in fl ower and seed production in a subtropical rain forest. Journal of Ecology 104:44-54. https://doi.org/10.1111/1365-2745.12481.

Dudley, L. S., M. T. K. Arroyo, and M. P. Fernández-Murillo. 2018. Physiological and fitness response of flowers to temperature and water augmentation in a high Andean geophyte. Environmental and Experimental Botany 150:1-8. https://doi.org/10.1016/j.envexpbot.2018.02.015.

Eckhart, V. M., I. Singh, A. Louthan, A. Keledjian, A. Chu, D. Moeller, and M. Geber. 2010. Plant Soil Water Relations and Species Border of Clarkia xantiana ssp. xantiana (Onagraceae). International Journal of Plant Sciences 171:749-760. https://doi.org/10.1086/654845.

Galen, C. 2005. It never rains, but then it pours. In E. Reekie and F. Bazzaz (eds.). Reproductive allocation in plants. Elsevier Academic Press, London, UK. https://doi.org/10.1016/B978-012088386-8/50003-X.

Giannini, N. P. 1999. La interacción de aves-murciélagos-plantas en el sistema de frugivoría y dispersión de semillas en San Javier, Tucumán, Argentina. Universidad Nacional de Tucumán.

Grau, H. R. 2002. Scale-dependent relationships between treefalls and species richness in a neotropical montane forest. Ecology 83:2591-2601. https://doi.org/10.1890/0012-9658(2002)083[2591:SDRBTA]2.0.CO;2.

Graves, W. R., and H. Zhang. 1996. Relative water content and rooting of subirrigated stem cuttings in four environments without mist. Horticultural Science 31:866-868. https://doi.org/10.21273/HORTSCI.31.5.866.

Hahn, P. G., and J. L. Maron. 2018. Plant water stress and previous herbivore damage affect insect performance. Ecological Entomology 43:47-54. https://doi.org/10.1111/een.12468.

Hunzinger, H. 1997. Hydrology of Montane Forests in the Sierra de San Javier, Tucuman, Argentina. Mountain research and development 17:299-308. https://doi.org/10.2307/3674020.

Hussner, A. 2010. Growth response and root system development of the invasive Ludwigia grandiflora and Ludwigia peploides to nutrient availability and water level. Fundamental and Applied Limnology / Archiv für Hydrobiologie 177:189-196. https://doi.org/10.1127/1863-9135/2010/0177-0189.

Lambrecht, S. C. 2013. Floral water costs and size variation in the highly selfing Leptosiphon bicolor (Polemoniaceae). International Journal of Plant Sciences 174:74-84. https://doi.org/10.1086/668230.

Lance, R. F., P. Bailey, D. L. Lindsay, and N. S. Cobb. 2017. Precipitation and the robustness of a plant and flower-visiting insect network in a xeric ecosystem. Journal of Arid Environments 144:48-59. https://doi.org/10.1016/j.jaridenv.2017.03.015.

Leathwick, J. R., and D. Whitehead. 2001. Soil and atmospheric water deficits and the distribution of New Zealand’s indigenous tree species. Functional Ecology 15:233-242. https://doi.org/10.1046/j.1365-2435.2001.00504.x.

Malizia, A., T. A. Easdale, and H. R. Grau. 2013. Rapid structural and compositional change in an old-growth subtropical forest: using plant traits to identify probable drivers. PloS One 8:e73546.

Malizia, A., and H. R. Grau. 2006. Liana-host tree associations in a subtropical montane forest of north-western Argentina. Journal of Tropical Ecology 22:331-339. https://doi.org/10.1371/journal.pone.0073546.

Monmany, A. C., and T. M. Aide. 2009. Landscape and community drivers of herbivore parasitism in Northwest Argentina. Agriculture, Ecosystem and Environment 134:148-152. https://doi.org/10.1016/j.agee.2009.06.013.

Nafus, M. G., T. D. Tuberville, K. A. Buhlmann, and B. D. Todd. 2017. Precipitation quantity and timing affect native plant production and growth of a key herbivore, the desert tortoise, in the Mojave Desert. Climate Change Responses 4:4. https://doi.org/10.1186/s40665-017-0032-9.

Pagter, M., and K. Petersen. 2008. Drought adaptation in Fuchsia magellanica and its effect on freezing tolerance. Journal of the American Society for Horticultural Science 133:11-19. https://doi.org/10.21273/JASHS.133.1.11.

Parra-Tabla, V., and S. H. Bullock. 2000. Phenotypic natural selection on flower biomass allocation in the tropical tree Ipomoea wolcottiana Rose (Convolvulaceae). Plant Systematics and Evolution 221:167-177. https://doi.org/10.1007/BF01089292.

Pezzola, E., S. Mancuso, and R. Karban. 2017. Precipitation affects plant communication and defense. Ecology 98:1693. https://doi.org/10.1002/ecy.1846.

Puchulu, M. E., and D. S. Fernández. 2014. Características y distribución espacial de los suelos de la provincia de Tucumán. Pp. 1-17 in S. Moyano, M. E. Puchulu, D. Fernandez, G. Aceñolaza, M. E. Vides and S. Nieva (eds.). Geología de Tucumán. Colegio de Geólogos de Tucumán, Tucumán, Argentina.

Ripoll, J., L. Urban, M. Staudt, F. López-Lauri, L. P. R. Bidel, and N. Bertin. 2014. Water shortage and quality of fleshy fruits-making the most of the unavoidable. Journal of Experimental Botany 65:4097-4117. https://doi.org/10.1093/jxb/eru197.

Sanders-Demott, R., R. McNellis, M. Jabouri, and P. H. Templer. 2018. Snow depth, soil temperature and plant-herbivore interactions mediate plant response to climate change. Journal of Ecology 106:1508-1519. https://doi.org/10.1111/1365-2745.12912.

Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9:617-675. https://doi.org/10.1038/nmeth.2089.

Zanor, M. I., S. Osorio, A. Nunes-Nesi, M. Carrari, F. Lohse, B. Usadel, C. Kuhn, W. Bleiss, P. Giavalisco, L. Willmitzer, R. Sulpice, Y. -H. Zhou, and A. R. Fernie. 2009. RNA interference of LIN5 in tomato confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiology 150:1204-1218. https://doi.org/10.1104/pp.109.136598.


Enlaces refback

  • No hay ningún enlace refback.


ISSN en línea: 0327-5477; impresa 1667-782X (español); 1667-7838 (inglés)