Competencia interespecífica y demografía de pequeños mamíferos en hábitats lineales

Autores/as

  • Vanesa N. Serafini Grupo de Investigaciones en Ecología Poblacional y Comportamental (GIEPCO), Instituto de Ciencias de la Tierra, Biodiversidad y Sustentabilidad Ambiental-Consejo Nacional de Investigaciones Científicas y Técnicas (ICBIA-CONICET), Universidad Nacional de Río Cuarto (UNRC). http://orcid.org/0000-0002-9212-6799
  • María D. Gómez Grupo de Investigaciones en Ecología Poblacional y Comportamental (GIEPCO), Instituto de Ciencias de la Tierra, Biodiversidad y Sustentabilidad Ambiental-Consejo Nacional de Investigaciones Científicas y Técnicas (ICBIA-CONICET), Universidad Nacional de Río Cuarto (UNRC). http://orcid.org/0000-0002-8902-824X
  • José W. Priotto Grupo de Investigaciones en Ecología Poblacional y Comportamental (GIEPCO), Instituto de Ciencias de la Tierra, Biodiversidad y Sustentabilidad Ambiental-Consejo Nacional de Investigaciones Científicas y Técnicas (ICBIA-CONICET), Universidad Nacional de Río Cuarto (UNRC). http://orcid.org/0000-0002-9641-7745

DOI:

https://doi.org/10.25260/EA.19.29.3.0.884

Resumen

La competencia interespecífica puede influir en los parámetros demográficos y afectar el tamaño poblacional de las especies competidoras. En el presente estudio evaluamos el efecto de la abundancia poblacional de Akodon azarae sobre los parámetros demográficos de otras especies del ensamble mediante datos de captura-marcado-recaptura (CMR). Además, evaluamos los efectos de la variación temporal, las perturbaciones antropogénicas (quemas), el clima (precipitaciones y temperaturas) y variables endógenas (sexo y abundancia) sobre dichos parámetros. El estudio fue realizado en un terraplén de ferrocarril en el centro de la Argentina, a través de muestreos mensuales de CMR desde noviembre de 2011 hasta mayo de 2014. Estimamos la abundancia usando modelos de Pradel con diseño robusto para poblaciones cerradas. Modelamos las probabilidades de recaptura y sobrevida mediante modelos de Cormack Jolly Seber y las probabilidades de permanencia y tasas de crecimiento poblacional mediante modelos de Pradel. La abundancia de A. azarae disminuyó después de la quema, mientras que las abundancias de M. musculus y C. musculinus aumentaron hasta convertirse en las especies más abundantes. La abundancia de A. azarae no afectó ningún parámetro demográfico de las demás especies del ensamble. Dichos parámetros fueron explicados por la variación temporal, sexo o temperatura. Si bien la quema modificó los números poblaciones durante un período de tiempo corto, no afectó ningún parámetro poblacional. Aunque A. azarae es considerada una especie dominante, no encontramos evidencia de que su abundancia afecte la demografía de las demás especies. Los terraplenes de ferrocarril ofrecerían refugio y alimento a todas las especies durante el año, lo que permitiría evitar la competencia por los recursos disponibles. Sin embargo, las perturbaciones antropogénicas pueden producir cambios en la composición del ensamble permitiendo que especies invasoras como el ratón doméstico se establezcan.

https://doi.org/10.25260/EA.19.29.3.0.884

Biografía del autor/a

Vanesa N. Serafini, Grupo de Investigaciones en Ecología Poblacional y Comportamental (GIEPCO), Instituto de Ciencias de la Tierra, Biodiversidad y Sustentabilidad Ambiental-Consejo Nacional de Investigaciones Científicas y Técnicas (ICBIA-CONICET), Universidad Nacional de Río Cuarto (UNRC).

Becaria Doctoral CONICET  ICBIA (Instituto de Ciencias de la Tierra, Biodiversidad y Sustentabilidad Ambiental)

María D. Gómez, Grupo de Investigaciones en Ecología Poblacional y Comportamental (GIEPCO), Instituto de Ciencias de la Tierra, Biodiversidad y Sustentabilidad Ambiental-Consejo Nacional de Investigaciones Científicas y Técnicas (ICBIA-CONICET), Universidad Nacional de Río Cuarto (UNRC).

Investigador Asistente CONICET

Jefe Trabajos Prácticos- Departamento de Ciencias Naturales. Fac. Cs. Exa., Fco-Qcas y Nat. UNRC

José W. Priotto, Grupo de Investigaciones en Ecología Poblacional y Comportamental (GIEPCO), Instituto de Ciencias de la Tierra, Biodiversidad y Sustentabilidad Ambiental-Consejo Nacional de Investigaciones Científicas y Técnicas (ICBIA-CONICET), Universidad Nacional de Río Cuarto (UNRC).

Investigador Prncipal CONICET  ICBIA (Instituto de Ciencias de la Tierra, Biodiversidad y Sustentabilidad Ambiental)

Profesor Asociado Departamento de Ciencias Naturales

Citas

Andreo, V., M. A. Lima, C. Provensal, J. W. Priotto, and J. J. Polop. 2009. Population dynamics of two rodent species in agro-ecosystems of central Argentina: Intra-specific competition, land-use, and climate effects. Population Ecology 51:297-306. https://doi.org/10.1007/s10144-008-0123-3.

Arlettaz, R., M. Krähenbühl, B. Almasi, A. Roulin, and M. Schaub. 2010. Wildflower areas within revitalized agricultural matrices boost small mammal populations but not breeding Barn Owls. Journal of Ornithology 151:553-564. https://doi.org/10.1007/s10336-009-0485-0.

Baraibar, B., P. R. Westerman, E. Carrión, and J. Recasens. 2009. Effects of tillage and irrigation in cereal fields on weed seed removal by seed predators. Journal of Applied Ecology 46:380-387. https://doi.org/10.1111/j.1365-2664.2009.01614.x.

Begon, M., C. R. Townsend, and J. L. Harper. 1996. Ecology: from individuals to ecosystems. Blackwell Pub.

Berry, R. J., A. Cuthbert, and J. Peters. 1982. Colonization by House mice: an experiment. Journal of Zoology 198:329-336.

Berry, R. J., and B. J. K. Tricker. 1969. Competition and extinction: the mice of Foula, with notes on those of Fair Isle and St Kilda. Journal of Zoology 158:247-265. https://doi.org/10.1111/j.1469-7998.1982.tb02079.x.

Bilenca, D. N., F. O. Kravetz, and G. A. Zuleta. 1992. Food habits of Akodon azarae and Calomys laucha (cricetidae, rodentia) in agroecosystems of central Argentina. Mammalia 56:371-384. https://doi.org/10.1515/mamm.1992.56.3.371.

Bomford, M., and T. Redhead. 1987. A field experiment to examine the effects of food quality and population density on reproduction of wild house mice. Oikos 48:304. https://doi.org/10.2307/3565518.

Bowers, M. A., and J. L. Dooley. 1991. Landscape composition and the Intensity and outcome of two-species competition. Oikos 60:180. https://doi.org/10.2307/3544864.

Brady, M. J., and N. A. Slade. 2001. Diversity of a grassland rodent community at varying temporal scales: the role of ecologically dominant species. Journal of Mammalogy 82:974-983. https://doi.org/10.1644/1545-1542(2001)082%3C0974:DOAGRC%3E2.0.CO;2.

Brunner, J. L., S. S. Duerr, F. Keesing, M. Killilea, H. Vuong, and R. S. Ostfeld. 2013. An experimental test of competition among mice, chipmunks, and squirrels in deciduous forest fragments. PLoS ONE 8(6):e66798. https://doi.org/10.1371/journal.pone.0066798.

Burkart, R., N. Bárbaro, R. O. Sánchez, and D. A. Gómez. 1999. Eco-regiones de la Argentina. Administración de Parques Nacionales - Programa de Desarrollo Institucional Ambiental, Buenos Aires, Argentina.

Busch, M., M. Álvarez, E. A. Cittadino, and F. O. Kravetz. 1997. Habitat selection and interspecific competition in rodents in pampean agroecosystems. Mammalia 61:167-184. https://doi.org/10.1515/mamm.1997.61.2.167.

Busch, M., D. N. Bilenca, E. A. Cittadino, and G. R. Cueto. 2005. Effect of removing a dominant competitor, Akodon azarae (Rodentia, Sigmodontinae) on community and population parameters of small rodent species in Central Argentina. Austral Ecology 30:168-178. https://doi.org/10.1111/j.1442-9993.2004.01434.x.

Busch, M., and F. O. Kravetz. 1992. Competitive interactions among rodents (Akodon azarae, Calomys laucha, C. musculinus and Oligoryzomys flavescens) in a two-habitat system. I. Spatial and numerical relationships. Mammalia 56:45-56. https://doi.org/10.1515/mamm.1992.56.1.45.

Busch, M., M. H. Miño, J. R. Dadon, K. Hodara, M. H. Mino, J. R. Dadon, and K. Hodara. 2001. Habitat selection by Akodon azarae and Calomys laucha (Rodentia, Muridae) in pampean agroecosystems. Mammalia 65:29-48. https://doi.org/10.1515/mamm.2001.65.1.29.

Butet, A., and A. B. A. Leroux. 2001. Effects of agriculture development on vole dynamics and conservation of Montagu’s harrier in western French wetlands. Biological Conservation 100:289-295. https://doi.org/10.1016/S0006-3207(01)00033-7.

Chen, L., G. Wang, X. Wan, and W. Liu. 2014. Complex and nonlinear effects of weather and density on the demography of small herbivorous mammals. Basic and Applied Ecology 16:172-179. https://doi.org/10.1016/j.baae.2014.12.002.

Choquet, R., R. Anne-Marie, R. Pradel, G. Olivier, and J.-D. Lebreton. 2003. User´s Manual for U-CARE, Version 2.0.

Cittadino, E. A., P. de Carli, M. Busch, and F. O. Kravetz. 1994. Effects of food supplementation on rodents in winter. Journal of Mammalogy 75:446-453. https://doi.org/10.2307/1382566.

Cooch, E., and G. C. White. 2019. Program MARK, a Gentle introduction. 19th edition.

Coulson, T., E. J. Milner-Gulland, and T. Clutton-Brock. 2000. The relative roles of density and climatic variation on population dynamics and fecundity rates in three contrasting ungulate species. Proceedings of the Royal Society B 267:1771-1779. https://doi.org/10.1098/rspb.2000.1209.

Courtalon, P., A. Dolcemascolo, V. Troiano, M. R. Álvarez, and M. Busch. 2003. Inter and Intraspecific Relationships in Akodon azarae and Calomys laucha (Rodentia, Sigmodontinae) in Pampean Agroecosystems. Mastozoología Neotropical 10:27-39.

Crespin, L., and M. A. Lima. 2006. Supervivencia adulta y dinámica poblacional del lauchón orejudo Phyllotis darwini en Chile central. Revista Chilena de Historia Natural 79:295-308. https://doi.org/10.4067/S0716-078X2006000300002.

Cueto, G. R., D. N. Bilenca, and F. O. Kravetz. 1995. Interspecific Social Relationships in Three Murid Rodent Species of Central Argentina, after Fasting and Unlimited FoodJSTOR. Behaviour 132:811-820. https://doi.org/10.1163/156853995X00018.

Ellis, B. A., J. N. Mills, G. E. Glass, K. T. Mckee, D. A. Enria, and J. E. Childs. 1998. Dietary habits of the common rodents in an agroecosystem in Argentina. Journal of Mammalogy 79:1203-1220. https://doi.org/10.2307/1383012.

Fischer, C., C. Thies, and T. Tscharntke. 2011. Small mammals in agricultural landscapes: Opposing responses to farming practices and landscape complexity. Biological Conservation 144:1130-1136. https://doi.org/10.1016/j.biocon.2010.12.032.

Fraschina, J., V. A. León, and M. Busch. 2012. Long-term variations in rodent abundance in a rural landscape of the Pampas, Argentina. Ecological Research 27:191-202. https://doi.org/10.1007/s11284-011-0888-2.

Gliwicz, J., and J. R. E. Taylor. 2002. Comparing life histories of shrews and rodents. Acta Theriologica 47:185-208. https://doi.org/10.1007/BF03192487.

Gómez, M. D., J. A. Coda, I. Simone, J. J. Martínez, F. Bonatto, A. R. Steinmann, and J. W. Priotto. 2015. Agricultural land-use intensity and its effects on small mammals in the central region of Argentina. Mammal Research 60:415-423. https://doi.org/10.1007/s13364-015-0245-x.

Gómez, M. D., J. W. Priotto, M. C. Provensal, A. R. Steinmann, E. A. Castillo, and J. J. Polop. 2008. A population study of house mice (Mus musculus) inhabiting different habitats in an Argentine urban area. International Biodeterioration and Biodegradation 62:270-273. https://doi.org/10.1016/j.ibiod.2007.08.004.

Gómez, M. D., V. N. Serafini, J. A. Coda, and J. W. Priotto. 2016. Demographic dynamics of Akodon azarae (Cricetidae: Sigmodontinae) in linear habitats of agricultural landscapes of central Argentina. Studies on Neotropical Fauna and Environment 51:10-18. https://doi.org/10.1080/01650521.2015.1137167.

Graipel, M. E., M. I. M. Hernández, and C. Salvador. 2014. Evaluation of abundance indexes in open population studies: a comparison in populations of small mammals in southern Brazil. Brazilian Journal of Biology 74:553-559. https://doi.org/10.1590/bjb.2014.0077.

Hodara, K., M. Busch, M. J. Kittlein, and F. O. Kravetz. 2000. Density-dependent habitat selection between maize cropfields and their borders in two rodent species (Akodon azarae and Calomys laucha) of Pampean agroecosystems. Evolutionary Ecology 14:571-593. https://doi.org/10.1023/A:1010823128530.

Hoeck, H. N. 1989. Demography and competition in Hyrax - A 17-year study. Oecologia 79:353-360. https://doi.org/10.1007/BF00384314.

Huitu, O., K. Norrdahl, and E. Korpimäki. 2004. Competition, predation and interspecific synchrony in cyclic small mammal communities. Ecography 27:197-206. https://doi.org/10.1111/j.0906-7590.2003.03684.x.

Kollmann, J., and S. Bassin. 2001. Effects of management on seed predation in wildflower strips in northern Switzerland. Agriculture, Ecosystems and Environment 83:285-296. https://doi.org/10.1016/S0167-8809(00)00202-4.

Kollmann, J., and M. Buschor. 2002. Edge effects on seed predation by rodents in deciduous forests of northern Switzerland. Plant Ecology 164:249-261. https://doi.org/10.1023/A:1021225728493.

Laake, J. L. 2013. RMark: An R Interface for analysis of capture-recapture data with MARK.

Li, H., and J. Wo. 2007. Landscape pattern analysis: issues and challenges. Pp. 39-61 in J. Wo and R. Hobbs (eds.). Key Topics in Landscape Ecology. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511618581.004.

Lidicker, W. Z. 1976. October. Social behaviour and density regulation in house mice living in large enclosures. The Journal of Animal Ecology 45:677-697. https://doi.org/10.2307/3575.

Lima, M. A., and F. M. Jaksic. 1998. Delayed density-dependent and rainfall effects on reproductive parameters of an irruptive rodent in semiarid Chile. Acta Theriologica 43:225-234. https://doi.org/10.4098/AT.arch.98-19.

Lima, M. A., N. C. Stenseth, H. Leirs, and F. M. Jaksic. 2003. Population dynamics of small mammals in semi-arid regions: a comparative study of demographic variability in two rodent species. Proceedings Biological Sciences. London Biology 270:1997-2007. https://doi.org/10.1098/rspb.2003.2448.

Martínez, J. J., V. Millien, I. Simone, and J. W. Priotto. 2014. Ecological preference between generalist and specialist rodents: Spatial and environmental correlates of phenotypic variation. Biological Journal of the Linnean Society 112:180-203. https://doi.org/10.1111/bij.12268.

McCallum, H. 2000. Population Parameters: Estimation for Ecological Models. Wiley-Blackwell, Oxford. https://doi.org/10.1002/9780470757468.

Mills, J. N., B. A. Ellis, K. T. Mckee, J. I. Maiztegui, and J. E. Childs. 1991. Habitat associations and relative densities of rodent populations in cultivated areas of central Argentina. Journal of Mammalogy 72:470-479. https://doi.org/10.2307/1382129.

Mutze, G. 1991. Mouse plagues in South Australia cereal-growing areas III. Changes in mouse abundance during plague and non-plague years, and the role of refugia. Wildlife Research 18:593. https://doi.org/10.1071/WR9910593.

Nichols, J. D., and J. E. Hines. 2002. Approaches for the direct estimation of λ, and demographic contributions to λ, using capture- recapture data. Journal of Applied Ecology 29:539-568. https://doi.org/10.1080/02664760120108809

Nichols, J. D., J. E. Hines, J.D. Lebreton, and R. Pradel. 2000. Estimation of contributions to population Growth: A reverse-time capture-recapture approach. Ecology 81:3362-3376. https://doi.org/10.2307/177500. https://doi.org/10.2307/177500.

Oli, M. K., and F. S. Dobson. 2001. Population cycles in small mammals: the α-hypothesis. Journal of Mammalogy 82:573-581. https://doi.org/10.1093/jmammal/82.2.573. https://doi.org/10.1644/1545-1542(2001)082%3C0573:PCISMT%3E2.0.CO;2.

Oli, M. K., and F. S. Dobson. 2003. The relative importance of life-history variables to population growth rate in mammals: Cole’s Prediction Revisited. The American Naturalist 161:422-440. https://doi.org/10.1086/367591.

Otis, D. L., K. P. Burnham, G. C. White, and D. R. Anderson. 1978. Statistical Inference from Capture Data on Closed Animal Populations. Wildlife Monographs 62:6-135.

Ozgul, A., L. L. Getz, and M. K. Oli. 2004. Demography of fluctuating populations: Temporal and phase-related changes in vital rates of Microtus ochrogaster. Journal of Animal Ecology 73:201-215. https://doi.org/10.1111/j.0021-8790.2004.00797.x.

Ozgul, A., M. K. Oli, L. E. Olson, D. T. Blumstein, and K. B. Armitage. 2007. Spatiotemporal variation in reproductive parameters of yellow-bellied marmots. Oecologia 154:95-106. https://doi.org/10.1007/s00442-007-0817-9.

Paine, R. T. 1966. Food Web Complexity and Species Diversity. The American Naturalist 100:65-75.

Pocock, M. J. O., H. C. Hauffe, and J. B. Searle. 2005. Dispersal in house mice. Biological Journal of the Linnean Society 84:565-583. https://doi.org/10.1111/j.1095-8312.2005.00455.x

Polop, J. J. 1996. Análisis de las respuestas adaptativas del género Calomys. Universidad Nacional de Río Cuarto, Córdoba, Argentina.

Post, E., N. C. Stenseth, R. Langvatn, and J. M. Fromentin. 1997. Global climate change and phenotypic variation among red deer cohorts. Proceedings. Biological sciences 264:1317-24. https://doi.org/10.1098/rspb.1997.0182.

Pradel, R. 1996. Utilization of capture-mark-recapture for studies of recruitment and population growth rate. Biometrics 52:703-709. https://doi.org/10.2307/2532908.

Priotto, J., D. Gómez, and J. Polop. 2010. A demographic analysis of population responses to the manipulation of adult males in Calomys venustus (Rodentia, Sigmodontinae). Ecological Research 25:521-529. https://doi.org/10.1078/1616-5047-00014.

Priotto, J. W., and J. J. Polop. 1997. Space and time use in syntopic populations of Akodon azarae and Calomys venustus (Rodentia, Muridae). Mammalian Biology 62:30-36.

Priotto, J. W., A. R. Steinmann, and J. J. Polop. 2002. Factors affecting home range size and overlap in Calomys venustus (Muridae: Sigmodontinae) in Argentine agroecosystems. Mammalian Biology 67:97-104. https://doi.org/10.1078/1616-5047-00014.

Pritchard, J. R., and D. Schluter. 2001. Declining interspecific competition during character displacement: Summoning the ghost of competition past. Evolutionary Ecology Research 3:209-220.

R Core Team. 2016. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria.

Salamolard, M., A. Butet, A. Leroux, and V. Bretagnolle. 2000. Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81:2428-2441. https://doi.org/10.1890/0012-9658(2000)081[2428:ROAAPT]2.0.CO;2.

Schickmann, S., A. Urban, K. Kräutler, U. Nopp-Mayr, and K. Hackländer. 2012. The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval, disturbed and managed Central European mountainous forests. Oecologia 170:395-409. https://doi.org/10.1007/s00442-012-2303-2.

Simone, I., F. Cagnacci, M. C. Provensal, and J. J. Polop. 2010. Environmental determinants of the small mammal assemblage in an agroecosystem of central Argentina: The role of Calomys musculinus. Mammalian Biology 75:496-509. https://doi.org/10.1016/j.mambio.2009.12.002.

Singleton, G. R. 1989. Population dynamics of an outbreak of house mice (Mus domesticus) in the mallee wheatlands of Australia; hypothesis of plague formation. Journal of Zoology 219:495-515. https://doi.org/10.1111/j.1469-7998.1989.tb02596.x.

Singleton, G. R., P. R. Brown, R. P. Pech, J. Jacob, G. J. Mutze, and C. J. Krebs. 2005. One hundred years of eruptions of house mice in Australia - A natural biological curio. Biological Journal of the Linnean Society 84:617-627. https://doi.org/10.1111/j.1095-8312.2005.00458.x.

Singleton, G. R., C. J. Krebs, S. A. Davis, L. Chambers, and P. R. Brown. 2001. Reproductive changes in fluctuating house mouse populations in southeastern Australia. Proceedings Biological Sciences 268:1741-8. https://doi.org/10.1098/rspb.2001.1638.

Sozio, G., and A. Mortelliti. 2016. Empirical evaluation of the strength of interspecific competition in shaping small mammal communities in fragmented landscapes. Landscape Ecology 31:775-789. https://doi.org/10.1007/s10980-015-0286-1.

Tattersall, F., R. Smith, and F. Nowell. 1997. Experimental colonization of contrasting habitats by house mice. Mammalian Biology 62:350-358.

Tuljapurkar, S. 1990. Population Dynamics in Variable Environments. Springer-Verlag, New York, USA. https://doi.org/10.1007/978-3-642-51652-8.

Twigg, L. E., and B. J. Kay. 1994. The Effects of Microhabitat and Weather on House Mouse (Mus domesticus) Numbers and the Implications for Management. The Journal of Applied Ecology 31:651. https://doi.org/10.2307/2404156.

Valone, T. J., and J. H. Brown. 1995. Effects of competition, colonization, and extinction on rodent species diversity. Science (New York, N.Y.) 267:880-3. https://doi.org/10.1126/science.7846530.

White, G. C., and K. P. Burnham. 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46:120-138. https://doi.org/10.1080/00063659909477239.

Williams, B., J. D. Nichols, and M. J. Conroy. 2002. Analysis and management of animal populations. Academic Press, San Diego, California, USA.

Ylönen, H., J. Jacob, M. J. Davies, and G. R. Singleton. 2002. Predation risk and habitat selection of Australian House Mice Mus domesticus during an incipient plague: Desperate behaviour due to food depletion. Oikos 99:284-289. https://doi.org/10.1034/j.1600-0706.2002.990208.x.

Interspecific competition and demography of small mammals in linear habitats

Publicado

2019-11-11

Cómo citar

Serafini, V. N., Gómez, M. D., & Priotto, J. W. (2019). Competencia interespecífica y demografía de pequeños mamíferos en hábitats lineales. Ecología Austral, 29(3), 416–427. https://doi.org/10.25260/EA.19.29.3.0.884