¿Las plantas exóticas leñosas dependen de los polinizadores para reproducirse? Un estudio de caso en las Sierras de la Ventana (Argentina)

Autores/as

  • Lucía C. Martínez Laboratorio de Interacciones Bióticas en Agroecosistemas (LIBA). Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur. Bahía Blanca, Argentina. https://orcid.org/0000-0002-5668-7775
  • Joana P. Haedo Laboratorio de Interacciones Bióticas en Agroecosistemas (LIBA). Centro de Recursos Naturales Renovables de la Zona Semiárida, CONICET. Bahía Blanca, Argentina.
  • Hugo J. Marrero Laboratorio de Interacciones Bióticas en Agroecosistemas (LIBA). Centro de Recursos Naturales Renovables de la Zona Semiárida, CONICET. Bahía Blanca, Argentina.

DOI:

https://doi.org/10.25260/EA.21.31.1.0.963

Palabras clave:

Spartium junceum, Genista monspessulana, Prunus mahaleb, Rosa rubiginosa, Rubus ulmifolius, autopolinización, polinización cruzada, invasiones biológicas

Resumen

En diferentes medidas, la mayoría de las plantas con flores dependen de los polinizadores para su reproducción. En el caso de las especies exóticas, el grado de dependencia es clave, ya que puede afectar su éxito en la colonización de nuevos ambientes. El objetivo de este estudio fue determinar el grado de dependencia de los polinizadores de cinco especies de plantas entomófilas exóticas en pastizales pampeanos de las Sierras de la Ventana. Se determinó si las diferencias en la dependencia se relacionan con la ubicación geográfica y con la filogenia de las especies vegetales. Las especies estudiadas fueron Spartium junceum, Genista monspessulana, Prunus mahaleb, Rosa rubiginosa y Rubus ulmifolius. El muestreo se realizó en el Parque Provincial Ernesto Tornquist (Provincia de Buenos Aires) y en zonas aledañas a éste. En los picos de floración de cada especie y en diferentes sitios se seleccionaron individuos a los que se les realizaron dos tratamientos en flores previamente embolsadas: autopolinización y polinización cruzada. Además, se dejaron flores sin polinizar como controles. Luego, se calculó la probabilidad de formación de frutos y la cantidad de semillas tanto en el control como bajo los diferentes tratamientos. Finalmente, se compararon los resultados de este estudio con otros realizados en diferentes regiones (excepto para R. ulmifolius). Las especies de plantas estudiadas mostraron una respuesta variada en cuanto a la dependencia de polinizadores, desde especies muy dependientes (e.g., S. junceum, G. monspessulana y P. mahaleb) hasta otras menos dependientes (e.g., R. rubiginosa y R. ulmifolius). Esto indica que la dependencia de los polinizadores puede ser variable en plantas que estén colonizando un hábitat fuera de su distribución nativa. Adicionalmente, existen variaciones en el grado de dependencia según el área geográfica, excepto para R. rubiginosa, lo que muestra que la localización geográfica puede influir sobre la dependencia de polinizadores de las plantas leñosas.

Citas

Allen, O. N., and E. K. Allen. 1981. Leguminosae: a source book of characteristics, uses, and nodulation. University of Wisconsin Press, Madison, Wisconsin, USA.

Amodeo, M. R. 2014. Dispersión del cerezo de Santa Lucía (Prunus mahaleb) en pastizales naturales del sur de la Provincia de Buenos Aires. Tesis Doctoral. Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina. Pp. 217.

Amodeo, M. R., and S. M. Zalba. 2013. Wild cherries invading natural grasslands: unraveling colonization history from population structure and spatial patterns. Plant Ecology 214:1299-1307. https://doi.org/10.1007/s11258-013-0252-4.

Amodeo, M. R., and S. M. Zalba. 2017. Sex morphs and invasiveness of a fleshy-fruited tree in natural grasslands from Argentina. Botany 95:913-922. https://doi.org/10.1139/cjb-2017-0041.

Baker, H. G. 1955. Self-compatibility and establishment of long-distance dispersal. Evolution 9:337-349. https://doi.org/10.2307/2405656.

Barrett, R. D. H., and D. Schluter. 2008. Adaptation from standing genetic variation. Trends in Ecology and Evolution 23:38-44. https://doi.org/10.1016/j.tree.2007.09.008.

Barrett, S. C. H. 2010. Why reproductive systems matter for the invasion biology of plants. Pages 195-210 in D. M. Richardson (eds.). Fifty years of invasion ecology: the legacy of Charles Elton. Blackwell, Oxford, UK. https://doi.org/10.1002/9781444329988.ch15.

Barrett, S. C. H., and C. G. Eckert. 1990. Current issues in plant reproductive ecology. Israel Journal of Plant Sciences 39:1-2. https://doi.org/10.1080/0021213X.1990.10677130.

Barrett, S. C. H., M. T. Morgan, and B. C. Husband. 1989. The dissolution of a complex genetic polymorphism: the evolution of self-fertilization in tristylous Eichhornia paniculata (Pontederiaceae). Evolution 43:1398-1416. https://doi.org/10.1111/j.1558-5646.1989.tb02591.x.

Bilenca, D., and F. Miñarro. 2004. Identificación de áreas valiosas de pastizal en las pampas y campos de Argentina, Uruguay y sur de Brasil (AVPs). No. 504.73 (8) BIL. Fundación Vida Silvestre, Buenos Aires, Argentina.

Brown, B. J., R. J. Mitchell, and S. A. Graham. 2002. Competition for pollination between an invasive species (purple loosestrife) and a native congener. Ecology 83:2328-2336. https://doi.org/10.1890/0012-9658(2002)083[2328:CFPBAI]2.0.CO;2.

Burgos, J. J. 1971. El clima de la provincia de Buenos aires en relación con la vegetación. Instituto Nacional de Tecnología Agropecuaria, Argentina.

Clapham, A. R., T. G. Tutin, and D. M. Moore. 1987: Flora of the British Isles. Cambridge: Cambridge University Press.

Core Team, R. C. T. M. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: www.R-project.org.

Devaux, C., C. Lepers, and E. Porcher. 2014. Constraints imposed by pollinator behaviour on the ecology and evolution of plant mating systems. Journal of Evolutionary Biology 27:1413-1430. https://doi.org/10.1111/jeb.12380.

Eckert, C. G., S. Kalisz, M. A. Geber, R. Sargent, E. Elle, P.-O. Cheptou, C. Goodwillie, M. O. Johnston, J. K. Kelly, D. A. Moeller, E. Porcher, R. H. Ree, M. Vallejo-Marín, and A. A. Winn. 2010. Plant mating systems in a changing world. Trends in Ecology and Evolution 25:35-43. https://doi.org/10.1016/j.tree.2009.06.013.

Frangi, J. L., and O. J. Bottino. 1995. Comunidades vegetales de la Sierra de la Ventana, provincia de Buenos Aires, Argentina. Revista de la Facultad de Agronomía de La Plata 71:93-133.

Gervasi, D. D. L., and F. P. Schiestl. 2017. Real-time divergent evolution in plants driven by pollinators. Nature Communications 8:14691. https://doi.org/10.1038/ncomms14691.

Harmon-Threatt, A. N., J. H. Burns, L. A. Shemyakina, and T. M. Knight. 2009. Breeding system and pollination ecology of introduced plants compared to their native relatives. American Journal of Botany 96:1544-1550. https://doi.org/10.3732/ajb.0800369.

Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous inference in general parametric models. Biometrical Journal 50:346-363. https://doi.org/10.1002/bimj.200810425.

Jordano, P. 1993. Pollination biology of Prunus mahaleb L.: deferred consequences of gender variation for fecundity and seed size. Biological Journal of the Linnean Society 50:65-84. https://doi.org/10.1111/j.1095-8312.1993.tb00919.x.

Jordano, P. 1994. Spatial and Temporal Variation in the Avian-Frugivore Assemblage of Prunus mahaleb: Patterns and Consequences. Oikos 71:479-491. https://doi.org/10.2307/3545836.

Kearns, C. A., and D. W. Inouye. 1993. Techniques for pollination biologists. University press of Colorado. Niwot, Colorado 80544, Estados Unidos.

Long, M. A., and C. M. Grassini. 1997. Actualización del conocimiento florístico del Parque Provincial Ernesto Tornquist. Informe final del Convenio de colaboración recíproca Ministerio de Asuntos Agrarios Provincia de Buenos Aires y Universidad Nacional del sur, Bahía Blanca, Argentina.

Lozada‐Gobilard, S., M. Weigend, E. Fischer, S. B. Janssens, M. Ackermann, and S. Abrahamczyk. 2018. Breeding systems in Balsaminaceae in relation to pollen/ovule ratio, pollination syndromes, life history and climate zone. Plant Biology 21:157-166. https://doi.org/10.1111/plb.12905.

Mazzolari, A. C., and V. Comparatore. 2014. Invasión de Rubus ulmifolius (Rosacea) en la Reserva Integral Laguna de los Padres, Buenos Aires, Argentina: bases para el trazado de estrategias de manejo y recuperación del bosque nativo. BioScriba 7:19-29.

Mazzolari, A. C., H. J. Marrero, and D. P. Vázquez. 2016. Potential contribution to the invasion process of different reproductive strategies of two invasive roses. Biol Invasions 18:1387-3547. https://doi.org/10.1007/s10530-016-1315-y.

Memmott, J., and N. M. Waser. 2002. Integration of alien plants into a native flower-pollinator visitation web. Proceedings of the Royal Society of London. Series B: Biological Sciences 269:2395-99. https://doi.org/10.1098/rspb.2002.2174.

Monasterio-Huelin, E., and H. E. Weber. 1996. Taxonomy and nomenclature of Rubus ulmifolius and Rubus sanctus (Rosaceae). Edinburgh Journal of Botany 53:311-322. https://doi.org/10.1017/S0960428600003759.

Morales, C. L., and M. A. Aizen. 2006. Invasive mutualisms and the structure of plant-pollinator interactions in the temperate forests of north-west Patagonia, Argentina. Journal of Ecology 94:171-180. https://doi.org/10.1111/j.1365-2745.2005.01069.x.

Niet, T. V. D., and S. D. Johnson. 2012. Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends in Ecology and Evolution 27:353-361. https://doi.org/10.1016/j.tree.2012.02.002.

Olesen, J. M., J. Bascompte, H. Elberling, and P. Jordano. 2008. Temporal dynamics in a pollination network. Ecology 89:1573-1582. https://doi.org/10.1890/07-0451.1.

Parker, I. M. 1997. Pollinator limitation of Cytisus scoparius (Scotch broom), an invasive exotic shrub. Ecology 78:1457-1470. https://doi.org/10.2307/2266140.

Parker, I. M., and K. A. Haubensak. 2002. Comparative pollinator limitation of two non-native shrubs: do mutualisms influence invasions? Oecologia 130:250-258. https://doi.org/10.1007/s004420100799.

Parodi, L. R. 1978. Enciclopedia Argentina de Agricultura y Jardinería. Descripción de las plantas cultivadas. Tomo I. ACME SACI. Buenos Aires, Argentina.

Pauchard, A., R. García, E. Peña, C. González, L. Cavieres, and R. Bustamante. 2008. Positive feedbacks between plant invasions and fire regimes: Genista monspessulana (L.) K. Koch (Fabaceae) in central Chile. Biological Invasions 10:547-553. https://doi.org/10.1007/s10530-007-9151-8.

Petanidou, T., A. S. Kallimanis, S. P. Sgardelis, A. D. Mazaris, J. D. Pantis, and N. M. Waser. 2014. Variable flowering phenology and pollinator use in a community suggest future phenological mismatch. Acta Oecologica 59:104-111. https://doi.org/10.1016/j.actao.2014.06.001.

Ramírez, F. J. 2020. Invasión de retamilla (Genista monspessulana) en las sierras australes bonaerenses: historia de su avance y estrategias de control. Tesis de grado. Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca. Argentina. Pp. 32.

Richardson, D. M., N. Allsopp, C. M. D’antonio, S. J. Milton, and M. Rejmánek. 2000. Plant invasions-the role of mutualisms. Biological Reviews 75:65-93. https://doi.org/10.1017/s0006323199005435.

Sanhueza, C. 2012. Ecología y manejo de leguminosas invasoras en la Sierra de la Ventana. Tesis Doctoral. Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca. Argentina. Pp. 166.

Šarhanová, P., R. J. Vašut, M. Dančák, P. Bureš, and B. Trávníček. 2012. New insights into the variability of reproduction modes in European populations of Rubus subgen. Rubus: how sexual are polyploid brambles? Sexual plant reproduction 25:319-335. https://doi.org/10.1007/s00497-012-0200-9.

Traveset, A., and D. M. Richardson. 2014. Mutualistic Interactions and Biological Invasion. Annual Review of Ecology, Evolution, and Systematics 45:89-113. https://doi.org/10.1146/annurev-ecolsys-120213-091857.

Tylianakis, J. M. 2008. Understanding the Web of Life: the Birds, the Bees and Sex with Aliens. PLoS Biology 6:e47. https://doi.org/10.1371/journal.pbio.0060047.

Ward, M., S. D. Johnson, and M. P. Zalucki. 2011. Modes of reproduction in three invasive milkweeds are consistent with Baker’s Rule. Biological Invasions 14:1237-1250. https://doi.org/10.1007/s10530-011-0152-2.

Zalba, S. M. and C. B. Villamil. 2002. Woody plant invasion in relictual grasslands. Biological Invasions 4: 55-72. https://doi.org/10.1023/A:1020532609792.

Zuur, A., E. N. Ieno, N. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer Science and Business Media. New York, USA. https://doi.org/10.1007/978-0-387-87458-6.

¿Las plantas exóticas leñosas dependen de los polinizadores para reproducirse? Un estudio de caso en las Sierras de la Ventana (Argentina)

Descargas

Archivos adicionales

Publicado

2021-02-22

Cómo citar

Martínez, L. C., Haedo, J. P., & Marrero, H. J. (2021). ¿Las plantas exóticas leñosas dependen de los polinizadores para reproducirse? Un estudio de caso en las Sierras de la Ventana (Argentina). Ecología Austral, 31(1), 017–028. https://doi.org/10.25260/EA.21.31.1.0.963

Número

Sección

Comunicaciones breves