El papel del banco de propágulos en el restablecimiento de macrófitos después de la gestión para la recuperación de un lago somero en el sur de Brasil

Autores/as

  • Taiane H. G. Duarte Biological Science Institute, Limnology Laboratory - Federal University of Rio Grande (FURG). Rio Grande, RS, Brazil.
  • Thaís S. Almeida Biological Science Institute, Limnology Laboratory - Federal University of Rio Grande (FURG). Rio Grande, RS, Brazil.
  • Edélti F. Albertoni Biological Science Institute, Limnology Laboratory - Federal University of Rio Grande (FURG). Rio Grande, RS, Brazil. http://orcid.org/0000-0001-5966-4686
  • Cleber Palma-Silva Biological Science Institute, Limnology Laboratory - Federal University of Rio Grande (FURG). Rio Grande, RS, Brazil. http://orcid.org/0000-0002-2301-4961

DOI:

https://doi.org/10.25260/EA.20.30.2.0.1014

Palabras clave:

lagos someros subtropicales, emergencia de plántulas, macrófitos acuáticos sumergidos, banco de semillas

Resumen

En los lagos someros subtropicales eutróficos, los macrófitos que flotan libremente pueden ocupar toda la superficie del agua. Eliminar esta vegetación favorece la recolonización de macrófitos sumergidos del banco de propágulos. Nuestro estudio presenta la respuesta del banco de propágulos de un lago somero subtropical después del manejo para reducir su hipertrofia. En marzo de 2016 tomamos muestras del sedimento del lago en 15 puntos a lo largo de tres transectas para investigar la riqueza y la densidad del banco de propágulos por emergencia en el laboratorio. Además, durante siete meses monitoreamos las condiciones de agua trófica y la restauración de la vegetación en el campo. En el laboratorio emergieron 1382 plántulas de ocho especies. Stuckenia pectinata y Chara zeylanica dominaron el banco de propágulos. En el campo identificamos las especies S. pectinata, C. zeylanica y Ludwigia peploides. El banco de propágulos fue homogéneo, sin diferencia (P>0.05) entre las regiones del lago y las transectas. La similitud de Sørensen fue del 54% entre el campo y el laboratorio. Cuando los macrófitos sumergidos crecieron en el campo, se redujo la clorofila-a, el agua permaneció clara y el índice de estado trófico se redujo de hipereutrófico a eutrófico. Concluimos que el banco de propágulos en lagos someros es esencial para el rápido restablecimiento de macrófitos sumergidos después de las estrategias de recuperación, ayudando a mejorar la calidad del agua.

Citas

Abernethy, V. J., and N. J. Willby. 1999. Changes along a disturbance gradient in the density and composition of propagule banks in floodplain aquatic habitats. Plant Ecol 140:177-190. https://doi.org/10.1023/A:1009779411686.

Albertoni, E. F., L. J. Prellvitz, and C. Palma-Silva. 2007. Macroinvertebrate fauna associated with Pistia stratiotes and Nymphoides indica in subtropical lakes (South Brazil). Braz J Biol 67:499-507. https://doi.org/10.1590/S1519-69842007000300015.

Albertoni, E. F., C. Palma-Silva, C. R. T. Trindade, and L. M. Furlanetto. 2014. Field evidence of the influence of aquatic macrophyte on water quality in a shallow eutrophic lake over a 13-year period. Acta Limnol Bras 26:176-185. https://doi.org/10.1590/S2179-975X2014000200008.

Albertoni, E. F., L. U. Hepp, C. Carvalho, and C. Palma-Silva. 2018. Invertebrate composition in submerged macrophyte debris: habitat and degradation time effects. Ecol Aust 28:93-103.

APHA - AMERICAN PUBLIC HEALTH ASSOCIATION. 2012. Standard methods for the examination of water and wastewater. 22nd ed. Washington, DC.

Arthaud, F., M. Mousset, D. Vallod, J. L. Robin, A. Wezel, and G. Bornette. 2012. Effect of light stress from phytoplankton on the relationship between aquatic vegetation and the propagule bank in shallow lakes. Freshw Biol 57:666-675. https://doi.org/10.1111/j.1365-2427.2011.02730.x.

Aponte, C., G. Kazakis, D. Ghosn, and V. P. Papanastasis. 2010. Characteristics of the soil seed bank in Mediterranean temporary ponds and its role in ecosystem dynamics. Wet Ecol Manag 18:243-253. https://doi.org/10.1007/s11273-009-9163-5.

Bakker, E. S., J. M. Sameel, R. D. Gulati, Z. Liu, and E. van Donk. 2013. Restoring macrophyte diversity in shallow temperate lakes: biotic versus abiotic constraints. Hydrobiologia 710:23-37. https://doi.org/10.1007/s10750-012-1142-9.

Barko, J. W., and W. F. James.1998. Effects of submerged aquatic macrophytes on Nutrient Dynamics, Sedimentation, and Resuspension. Pp. 197-214 in E. Jeppensen (ed.). The structuring role of submerged macrophytes in lakes. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-0695-8_10.

Bennett, E. M., S. R. Carpenter, and N. F. Caraco. 2001. Human impact on erodable phosphorus and eutrophication: a global perspective. BioScience 51:227-234. https://doi.org/10.1641/0006-3568(2001)051[0227:HIOEPA]2.0.CO;2.

Blindow, I. 1992 Long- and short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshw Biol 28:15-27. https://doi.org/10.1111/j.1365-2427.1992.tb00558.x.

Blindow, I., G. Anderson, A. Hargeby, and S. Hansson.1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshw Biol 30:159-167. https://doi.org/10.1111/j.1365-2427.1993.tb00796.x.

Blindow, I., S. Dahlke, A. Dewart, A. Flügge, M. Hendreschke, A. Kerkow, and J. Meyer. 2016. Long-term and interannual changes of submerged macrophytes and their associated diaspore reservoir in a shallow southern Baltic Sea bay: influence of eutrophication and climate. Hydrobiologia 778:121-136. https://doi.org/10.1007/s10750-016-2655-4.

Boedeltje, G., N. J. Gerard, T. Heerdt, and J. P. Bakker. 2002. Applying the seedling-emergence method under waterlogged conditions to detect the seed bank of aquatic plants in submerged sediments. Aquat Bot 72:121-128. https://doi.org/10.1016/S0304-3770(01)00224-8.

Boedeltje, G., J. P. Bakker, and G. N. J. ter Heerdt. 2003. Potential role of propagule banks in the development of aquatic vegetation in backwaters along navigation canals. Aquat Bot 77:53-69. https://doi.org/10.1016/S0304-3770(03)00078-0.

Bonis, A., and P. Grillas. 2002. Deposition, germination and spatio-temporal patterns of charophyte propagule banks: a review. Aquat Bot 72:235-248. https://doi.org/10.1016/S0304-3770(01)00203-0.

Bornette, G., and S. Puijalon. 2011. Response of aquatic plants to abiotic factors: A review. Aquat Sci 73:1-14. https://doi.org/10.1007/s00027-010-0162-7.

Brock, M. A., K. Theodore, and L. O´Donnel. 1994. Seed bank methods for Australian wetlands. Aust J Mar Freshw Res 45:483-493. https://doi.org/10.1071/MF9940483.

Carlson, R. E. 1977. A trophic state index for lakes. Limnol Oceanogr 22:361-369. https://doi.org/10.4319/lo.1977.22.2.0361.

Carvalho, C., L. U. Hepp, C. Palma-Silva, and E. F. Albertoni. 2015. Decomposition of macrophytes in a shallow subtropical lake. Limnologica 53:1-9. https://doi.org/10.1016/j.limno.2015.04.003.

Chambers, P. A., P. Lacoul, K. J. Murphy, and S. M. Thomaz.2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 594:9-26. https://doi.org/10.1007/978-1-4020-8259-7_2. https://doi.org/10.1007/s10750-007-9154-6.

Combroux, I. C. S., and G. Bornette. 2004. Propagule banks and regenerative strategies of aquatic plants. J Veg Sci 15:13-20. https://doi.org/10.1111/j.1654-1103.2004.tb02232.x.

Coops, H., and R. W. Doef. 1996. Submerged vegetation development in two shallow, eutrophic lakes. Hydrobiologia 340:115-120. https://doi.org/10.1007/BF00012742.

Costa, M. B., F. V. Tavares, C. B. Martinez, I. G. Colares, and C. M. G. Martins. 2018. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation. Ecotoxicol Environ Saf 155:117-124. https://doi.org/10.1016/j.ecoenv.2018.01.062.

Cunha, D. G. F., M. C. Calijuri, and M. C. Lamparelli. 2013. A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol Eng 60:126-134. https://doi.org/10.1016/j.ecoleng.2013.07.058.

Forno, I. W. 1983. Native distribution of the Salvinia auriculata complex and keys to species identification. Aquat Bot 17:71-83. https://doi.org/10.1016/0304-3770(83)90019-0.

Gil, A. S. B., and C. P. Bove. 2007. Eleocharis R.Br. (Cyperaceae) no Estado do Rio de Janeiro, Brasil. Biota Neotrop 7:163-193. https://doi.org/10.1590/S1676-06032007000100020.

Grillas, P., P. García-Murillo, O. Geertz-Hansen, N. Marba, C. Montes, C. M. Duarte, L. Tan Ham, and A. Grossmann. 1993. Submerged macrophyte seed bank in a Mediterranean temporary marsh: abundance and relationship with established vegetation. Oecologia 94:1-6. https://doi.org/10.1007/BF00317293.

Gross, E. M., S. Hilt, P. Lombardo, and G. Mulderij. 2007. Searching for allelopathic effects of submerged macrophytes on phytoplankton - state of the art and open questions. Hydrobiologia 584:77-88. https://doi.org/10.1007/s10750-007-0591-z.

Hidding, B., R. J. Brederveld, and B. A. Nolet. 2010. How a bottom-dweller beats the canopy: inhibition of an aquatic weed (Potamogeton pectinatus) by macroalgae (Chara spp.). Freshw Biol 55:1758-1768. https://doi.org/10.1111/j.1365-2427.2010.02409.x.

Hilt, S., E. M. Gross, M. Hupfer, H. Morscheid, J. Mählmann, and A. Melzer. 2006. Restoration of submerged vegetation in shallow eutrophic lakes - guideline and state of the art in Germany. Limnologica 36:155-171. https://doi.org/10.1016/j.limno.2006.06.001.

Hilt, S., K. V. de Weyer, A. Köhler, and I. Chorus. 2010. Submerged macrophyte responses to reduced phosphorus concentrations in two peri-urban lakes. Restor Ecol 18:452-461. https://doi.org/10.1111/j.1526-100X.2009.00577.x.

Hilt, S., S. Brothers, E. Jeppesen, A. Veraart, and S. Kosten. 2017. Translating regime shifts in shallow lakes into changes in ecosystem functions and services. Bioscience 67:928-936. https://doi.org/10.1093/biosci/bix106.

Hilt, S., M. M. A. Nuñez, E. S. Bakker, I. Blindow, T. A. Davidson, M. Gillefalk, L.-A. Hansson, J. H. Janse, A. B. G. Janssen, E. Jeppesen, T. Kabus, A. Kelly, J. Köhler, T. L. Lauridsen, W. M. Mooij, R. Noordhuis, G. Phillips, J. Rücker, H.-H. Schuster, M. Søndergaard, S. Teurlincx, K. van de Weyer, E. van Donk, A. Waterstraat, N. Willby, and C. D. Sayer. 2018. Response of Submerged Macrophyte Communities to External and Internal Restoration Measures in North Temperate Shallow Lakes. Front Plant Sci 9:194. https://doi.org/10.3389/fpls.2018.00194.

Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen, and J. Jensen. 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342:151-164. https://doi.org/10.1023/A:1017046130329.

Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, and L. Carvalho. 2005. Lake responses to reduced nutrient loading - an analysis of contemporary data from 35 European and North American long-term studies. Freshw Biol 50:1747-1771. https://doi.org/10.1111/j.1365-2427.2005.01415.x.

Jeppesen, E., M. Meerhoff, B. A. Jacobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo, and C. W. C. Branco. 2007. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate. Hydrobiologia 581:269-285. https://doi.org/10.1007/s10750-006-0507-3. https://doi.org/10.1007/978-1-4020-6158-5_28.

Kalin, M., and P. M. Smith. 2007. Germination of Chara vulgaris and Nitella flexilis oospores: What are the relevant factors triggering germination? Aquat Bot 87:235-241. https://doi.org/10.1016/j.aquabot.2007.06.004.

Liu, G., W. Li, J. Zhou, W. Liu, D. Yang, and A. J. Davy. 2006. How does the propagule bank contribute to cyclic vegetation change in a lakeshore marsh with seasonal drawdown? Aquat Bot 84:137-143. https://doi.org/10.1016/j.aquabot.2005.08.005.

Lu, B., Z. Xu, J. Li, and X. Chai. 2018. Removal of water nutrients by different aquatic plant species: An alternative way to remediate polluted rural Rivers. Ecol Eng 110:18-26. https://doi.org/10.1016/j.ecoleng.2017.09.016.

Ma, M., C. C. Baskin, K. Yu, Z. Ma, and G. Du. 2017. Wetland drying indirectly influences plant community and seed bank diversity through soil pH. Ecol Ind 80:186-195. https://doi.org/10.1016/j.ecolind.2017.05.027.

Maluf, J. R. T. 2000. Nova classificação climática do estado do Rio Grande do Sul, Santa Maria, RS. Rev Brasil Agrometeor 8:141-150.

McFarland, D. G., and D. J. Shafer. 2011. Protocol considerations for aquatic plant seed bank assessment. J Aquat Plant Manage 49:9-19.

Meerhoff, M., and E. Jeppesen. 2009. Shallow lakes and ponds. Pp. 343-353 in G. E. Likens (ed.). Encyclopedia of Inland Waters. Elsevier, Oxford. https://doi.org/10.1016/B978-012370626-3.00041-7.

Meijer, M. L., I. Boois, M. Scheffer, R. Portielje, and H. Hosper. 1999. Biomanipulation in shallow lakes in The Netherlands: an evaluation of 18 case studies. Hydrobiologia 408/409:13-30. https://doi.org/10.1023/A:1017045518813.

Menon, R., and M. M. Holland. 2014. Phosphorus release due to decomposition of wetland plants. Wetlands 34:1191-1196. https://doi.org/10.1007/s13157-014-0578-2.

Moss, B., J. Madgwick, and G. Phillips. 1997. A guide to the restoration of nutrient-enriched lakes. WW Hawes, London, UK.

Nielsen, D. L., C. Campbell, G. N. Rees, R. Durant, R. Littler, and R. Petrie. 2018. Seed bank dynamics in wetland complexes associated with a lowland river. Aquatic Sci 80:23. https://doi.org/10.1007/s00027-018-0574-3.

Nilsson, C., R. L. Brown, R. Jansson, and D. M. Merritt. 2010. The role of hydrochory in structuring riparian and wetland vegetation. Biol Rev 85:837-858. https://doi.org/10.1111/j.1469-185X.2010.00129.x.

Ozimek, T. 2006. The possibility of submerged macrophyte recovery from a propagule bank in the eutrophic Lake Mikołajskie (North Poland). Hydrobiologia 570:127-131. https://doi.org/10.1007/978-1-4020-5390-0_18. https://doi.org/10.1007/s10750-006-0171-7.

Palma-Silva, C., E. F. Albertoni, C. R. T. Trindade, and S. Oliveira. 2008. Nymphoides indica (L.) O. Kuntze (Menyanthaceae) em um pequeno lago raso subtropical (Rio Grande, RS). Iheringia 63:249-256.

Pedro, F., L. Maltchik, and I. Bianchini Jr. 2006. Hydrologic cycle and dynamics of aquatic macrophytes in two intermittent rivers of the semi-arid region of Brazil. Braz J Biol 66: 575-585. https://doi.org/10.1590/S1519-69842006000400002.

Pereira, S. A., C. R. T. Trindade, E. F. Albertoni, and C. Palma-Silva. 2012a. Aquatic macrophytes of six subtropical shallow lakes, Rio Grande, Rio Grande do Sul, Brazil. Check List 8:187-191. https://doi.org/10.15560/8.2.187.

Pereira, S. A., C. R. T. Trindade, E. F. Albertoni, and C. Palma-Silva. 2012b. Aquatic macrophytes as indicators of water quality in subtropical shallow lakes, Southern Brazil. Acta Limnol Bras 24:52-63. https://doi.org/10.1590/S2179-975X2012005000026.

Scheffer, M., H. S. Hosper, M. J. Meijer, B. Moss, and E. Jeppensen.1993. Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275-279. https://doi.org/10.1016/0169-5347(93)90254-M.

Scheffer, M., S. Szabo, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers, and R. J. M. Franken.2003. Floating plant dominance as a stable state. Proc Natl Acad Sci USA 100:4040-4045. https://doi.org/10.1073/pnas.0737918100.

Scheffer, M., and E. H. van Nes. 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584:455-466. https://doi.org/10.1007/s10750-007-0616-7.

Trindade, C. R. T., L. M. Furlanetto, and C. Palma-Silva. 2009. Nycthemeral cycles and seasonal variation of limnological factors of a subtropical shallow lake (Rio Grande, RS, Brazil). Acta Limnol Bras 21:35-44.

Van den Berg, M. S., H. Coops, J. Simons, and A. de Keizer.1998. Competition between Chara aspera and Potamogeton pectinatus as a function of temperature and light. Aquatic Bot 60:241-250. https://doi.org/10.1016/S0304-3770(97)00099-5.

Van den Berg, M. S., H. Coops, and J. Simons. 2001. Propagule bank buildup of Chara aspera and its significance for colonization of a shallow lake. Hydrobiology 462:9-17. https://doi.org/10.1023/A:1013125603555.

Van den Berg, M. S., H. Coops, J. Simons, and J. Pilon. 2002. A comparative study of the use of inorganic carbon resources by Chara aspera and Potamogeton pectinatus. Aquat Bot 72:219-233. https://doi.org/10.1016/S0304-3770(01)00202-9.

van Nes, E. H., M. Scheffer, M. Van den Berg, and H. Coops. 2003. Charisma: a spatial explicit simulation model of submerged macrophytes. Ecol Model 159:103-116. https://doi.org/10.1016/S0304-3800(02)00275-2.

Van Wijk, R. J. 1988. Ecological studies on Potamogeton pectinatus L. I. General characteristics, biomass production and life cycles under field conditions. Aquat Bot 31:211-258. https://doi.org/10.1016/0304-3770(88)90015-0.

van Zuidam, J. P., E. P. Raaphorst, and E. T. H. M. Peeters.2012. The role of propagule banks from drainage ditches dominated by free‐floating or submerged plants in vegetation restoration. Rest Ecol 20:416-425. https://doi.org/10.1111/j.1526-100X.2011.00784.x.

Verhofstad, M. J. J. M., M. D. M. Poelen, M. M. L. van Kempen, E. S. Bakker, and A. J. P. Smolders. 2017. Mass development of monospecific submerged macrophyte vegetation after the restoration of shallow lakes: Roles of light, sediment nutrient levels, and propagule density. Aquat Bot 141:29-38. https://doi.org/10.1016/j.aquabot.2017.04.004.

Verpoorter, C., T. Kutser, D. A. Seekell, and L. J. Tranvik.2014. A global inventory of lakes based on high-resolution satellite imagery. Geophys Res Lett 41:6396-6402. https://doi.org/10.1002/2014GL060641.

von Sperling, E. 1997. The process of biomass formation as the key point in the restoration of tropical eutrophic lakes. Hydrobiologia 342/343:351-354. https://doi.org/10.1023/A:1017040818459.

Xie, D., D. Yu, L. F. Yu, and C. H. Liu. 2010. Asexual propagations of introduced exotic macrophytes Elodea nuttallii, Myriophyllum aquaticum, and M. propinquum are improved by nutrient-rich sediments in China. Hydrobiologia 655:37-47. https://doi.org/10.1007/s10750-010-0402-9.

Zeng, L., F. He, Z. Dai, D. Xu, B. Liu, Q. Zhou, and Z. Wu. 2017. Effect of submerged macrophyte restoration on improving aquatic ecosystem in a subtropical, shallow lake. Ecol Eng 106:578-587. https://doi.org/10.1016/j.ecoleng.2017.05.018.

Role of the propagule bank in reestablishing submerged macrophytes after removal of free-floating plants for recovery of a shallow lake in Southern Brazil

Descargas

Publicado

2020-06-30

Cómo citar

Duarte, T. H. G., Almeida, T. S., Albertoni, E. F., & Palma-Silva, C. (2020). El papel del banco de propágulos en el restablecimiento de macrófitos después de la gestión para la recuperación de un lago somero en el sur de Brasil. Ecología Austral, 30(2), 239–250. https://doi.org/10.25260/EA.20.30.2.0.1014