Limnology of an acidic system: Agrio River-Caviahue Lake, Province of Neuquén, Argentina

Authors

  • Fernando Luis Pedrozo INIBIOMA-U. N. Comahue. San Carlos de Bariloche, Río Negro, Argentina.
  • Mónica Mabel Díaz INIBIOMA-U. N. Comahue. San Carlos de Bariloche, Río Negro, Argentina.
  • Pedro Félix Temporetti INIBIOMA-U. N. Comahue. San Carlos de Bariloche, Río Negro, Argentina.
  • Gustavo Daniel Baffico INIBIOMA-U. N. Comahue. San Carlos de Bariloche, Río Negro, Argentina.
  • Sara Guadalupe Beamud INIBIOMA-U. N. Comahue. San Carlos de Bariloche, Río Negro, Argentina.

Keywords:

extreme environment, acidophilic algae, nutrients, sediments

Abstract

The Río Agrio-Lago Caviahue system which constitutes a unique case in South America of waters of extreme acidity (pH<4), has been studied during the last 10 years. The high acidity is originated by the magmatic effusions of the Volcano Copahue which feeds the sources of the Río Agrio. The water system neutralizes after crossing an extension of 50 km. This situation defines a natural gradient of acidity, concentration and transport of nutrients and metals. The system shows low species diversity in the lacustrine plankton as well as in the stream epilithon. The low pH allows the dissolution of the majority of the present elements, determining environments rich in metals and phosphorus. Unlike other Andean lakes of the Patagonia, the Lake Caviahue experiments short periods of variations in pH and conductivity, situation that is controlled by the volcanic activity. The sediments of the lake are rich in organic matter (OM) being the OM who controls the phosphorus availability.The extreme conditions of the lake, the ammonium and dissolved inorganic and organic carbon concentrations maintain a high planktonic density, mainly represented by Keratococcus raphidioides. The replacement of algal species (seasonal succession) not occurs in this lake and the small changes observed are related to the geochemistry of the basin. The epilithic biomass along the Río Agrio Inferior exhibits a strong distribution linked to the changes in pH. The conspicuous algae developments are mainly composed by filamentous green algae (e.g., Ulothrix spp.).

References

BAFFICO, GD. 2007. Factores que controlan el crecimiento de la comunidad perifítica en distintos ambientes acuáticos en Patagonia. Tesis Doctoral, Universidad Nacional del Comahue. Bariloche, Argentina.

BAFFICO, GD.2010. Epilithic algae distribution along a chemical gradient in a naturally acidic river, Río Agrio (Patagonia, Argentina). Microb. Ecol., 59:533-545.

BAFFICO, GD; MM DIAZ; MT WENZEL; M KOSCHORRECK; M SCHIMMELE; ET AL. 2004. Community structure and photosynthetic activity of epilithon from a highly acidic (pH≤2) mountain stream in Patagonia, Argentina. Extremophiles, 8:463-473.

BEAMUD, SG. 2009. Control del crecimiento y la distribución vertical del fitoplancton de un lago ácido natural: Lago Caviahue. Tesis Doctoral, Universidad Nacional del Comahue. Bariloche, Argentina.

BEAMUD, SG; M DIAZ & F PEDROZO. 2007. Summer phytoplankton composition and nitrogen limitation of the deep, naturally-acidic (pH ~2.2) Lake Caviahue, Patagonia, Argentina. Limnologica, 37:37-48.

BEAMUD, SG; MM DIAZ & FL PEDROZO. 2009. Nutrient limitation of phytoplankton in a naturally acidic lake (Lake Caviahue, Argentina). Limnology, DOI 10.1007/s10201-009-0295-3.

BEAMUD, SG; MM DIAZ; N BACCALA & FL PEDROZO. 2010. Analysis of patterns of vertical and temporal distribution of phytoplankton using multifactorial analysis: Acidic Lake Caviahue, Patagonia, Argentina. Limnologica, 40:140-147.

BÖSTROM, B; M JANSSON & C FORSBERG. 1982. Phosphorus Release from Lake Sediments. Arch. Hydrobiol. Beih. Erg. Limnol., 18:5-59.

DIAZ, MM; FL PEDROZO; C REYNOLDS & P TEMPORETTI. 2007. Chemical composition an d the nitrogen- regulated trophic State of Patagonian lakes. Limnologica, 37:37-48.

DIAZ, M & SC MABERLY. 2009. Carbon concentrating mechanisms in acidophilic algae. Phycologia, 48(2):77-85.

FRIESE, K; M HUPFER & M SCHULTZE. 1998. Chemical Characteristics of Water and Sediment in Acid Minig Lakes of the Lusatian Lignite District. (Parte 2). Pp. 25-45 en: Geller, W; H Klapper & W Salomons (eds.). Acidic Mining Lakes: Acid Mine Drainage, Limnology and Reclamation. Springer, Berlin.

GELLER, W; H KLAPPER & M SCHULTZE. 1998. Natural and anthropogenic sulfuric acidification of lakes. (Parte 1). Pp. 3-14 en: Geller, W; H Klapper & W Salomons (eds.). Acidic Mining Lakes: Acid Mine Drainage, Limnology and Reclamation. Springer, Berlin.

GROSS, W. 2000. Ecophysiology of algae living in highly acidic environments. Hydrobiologia, 433: 31-37.

HUPFER, M; P FISCHER & K FRIESE. 1998. Phosphorus Retention Mechanisms in the Sediment of an Eutrophic Mining Lake. Water, Air and Soil Pollut., 108:341-352.

IVANOV, MV & GI KARAVAIKO. 1966. The Role of microorganisms in the sulphur cycle in crater lakes of the Golovin Caldera. Z. Allg. Mikrobiol., 6:10-22.

KAMJUNKE, N; U GAEDKE; J TITTEL; G WEITHOFF & EM BELL. 2004. Strong vertical differences in the plankton composition of an extremely acidic lake. Archiv. Hydrobiol., 161:289-306.

LANE, AE & JE BURRIS. 1981. Effects of environmental pH on the internal pH of Chlorella pyrenoidosa, Scenedesmus quadricauda, and Euglena mutabilis. Plant. Physiol., 68:439-442.

LÓPEZ-ARCHILLA, AI; I MARIN & R AMILS. 2001. Microbial community composition and ecology of an acidic aquatic environment: the Tinto River, Spain. Microb. Ecol., 41:20-35.

MARKERT, B; F PEDROZO; W GELLER; S KORHAMMER; K FRIESE; ET AL. 1997. A contribution to the study of the heavy-metal and nutritional element status of some lakes in the southern Andes of Argentina (Patagonia). Sci. Tot. Env., 206:1-15.

MESSERLI, MA; LA AMARAL-ZETTLER; E ZETTLER; SK JUNG; PJS SMITH; ET AL. 2005. Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile. J. Exp. Biol., 208:2569- 2579.

NAKATSU, C & TC HUTCHINSON. 1988. Extreme metal and acid tolerance of Euglena mutabilis and an associated yeast from Smoking Hills, Northwest Territories, and their apparent mutualism. Microb. Ecol., 16:213-231

NIXDORF, B; K WOLLMANN & R DENEKE. 1998a. Ecological potentials for planktonic development and food web interactions in extremely acidic mining lakes in Lusatia. (Parte 2). Pp. 147-167 en: Geller, W; H Klapper & W Salomons (eds.). Acidic Mining Lakes: Acid Mine Drainage, Limnology and Reclamation. Springer, Berlin.

NIXDORF, B; U MISCHKE & D LESSMANN. 1998b. Chrysophytes and Chlamydomonads: Pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusatia (Germany). Hydrobiologia, 369/370: 315-327.

OHLE, W. 1936. Der schewefelsaure Tonteich bei Reinbeck. Monographie eines Idiotrophen Gewässers. Arch. Hydrobiol., 30:604-662.

OHLE, W. 1938. Die Bedeutung der Austauschvorgänge zwischen Schlam und Wasser für den Stoffkreislauf der Gewässer. Vom Wasser, XIII:87-97.

OLAVESON, MM & PM STOKES. 1989. Responses of the acidophilic alga Euglena mutabilis (Euglenophyceae) to carbon enrichment at pH 3. J. Phycol., 25:529-539.

OLAVESON, MM & C NALEWAJKO. 2000. Effects of acidity on the growth of two Euglena species. Hydrobiologia, 433:39-56.

PARKER, SR; CH GAMMONS; FL PEDROZO & SA WOOD. 2008. Diel changes in metal concentrations in a geogenically acidic river: Rio Agrio, Argentina. J. Vul. Geo. Res., 178:213-223.

PEDROZO, FL & CA BONETTO. 1987. Nitrogen and phosphorus transport in the Bermejo River (South America). Rev. Hydrobiol. Trop., 20(2):91-99.

PEDROZO, F; S CHILLRUD; P TEMPORETTI & M DIAZ. 1993. Chemical composition and nutrient limitation in rivers and lakes of Northern Patagonian Andes (39.5°-42° S; 71° W) (Rep. Argentina). Verh. Internat. Verein. Limnol., 25:207-214.

PEDROZO, F; L KELLY; M DIAZ; P TEMPORETTI; G BAFFICO; ET AL. 2001. First results on the water chemistry, algae and trophic status of an Andean acidic lake system of volcanic origin in Patagonia (Lake Caviahue). Hydrobiologia, 452:129-137.

PEDROZO, FL; P TEMPORETTI; G BEAMUD & M DIAZ. 2008. Influence of nutrients on the trophic state of Caviahue, a volcanically-acidified lake in Patagonia, Argentina. J. Vul. Geo. Res., 178:205-212.

PESCE, AH. 1989. Evolución volcano-tectónica del complejo efusivo Copahue-Caviahue y su modelo geotérmico preliminar. Asoc. Geol. Argent., XLIV(1-4):307-327.

PICK, U. 1999. Dunaliella acidophila - a most extreme acidophilic alga. (Capítulo 36). Pp. 465-478 en: Seckbach, J (ed.). Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, The Netherlands.

REYNOLDS, CS. 1997. Vegetation processes in the pelagic: a model for Ecosystem theory. Excellence in Ecology 9. Ecology Institute, England.

SATAKE, K & Y SAIJO. 1974. Carbon content and metablic activity of microorganisms in some acid lakes in Japan. Limnol. Oceanogr., 19:331-338.

SCHINDLER, DW; MA TURNER & RH HESSLEIN. 1985. Acidification and alkalinization of lakes by experimental addition of nitrogen compounds. Biogeochemistry, 1:117-133.

TILMAN, D; R KIESLING; R STERNER; SS KILHAM & FA JOHNSON. 1986. Green, blue-green and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Arch. Hydrobiol., 106(4):473-485.

UENO, M. 1958. The Disharmonious Lakes of Japan. Verh. Internat. Verein Limnol., 13:217-226. VAREKAMP, JC; GB PASTERNACK & GL ROWE. 2000.

Volcanic lake systematics II. Chemical constraints. J. Vol. Geo. Res., 97:161-180.

WETZEL, RG. 2001. Limnology. Academic Press, California. USA.

WHITTON, BA & BM DIAZ. 1981. Influence of environmental factors on photosynthetic species composition in highly acidic waters. Verh. Internat. Verein Limnol., 21:1459-1465.

Published

2010-08-01

How to Cite

Pedrozo, F. L., Díaz, M. M., Temporetti, P. F., Baffico, G. D., & Beamud, S. G. (2010). Limnology of an acidic system: Agrio River-Caviahue Lake, Province of Neuquén, Argentina. Ecología Austral, 20(2), 173–184. Retrieved from https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1317