Propagación de distintos tipos funcionales de la costra biológica del suelo del desierto del Monte, Argentina

Autores/as

  • Vanesa García Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA). Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET-CCT Mendoza. Mendoza, Argentina.
  • Julieta Aranibar Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA). Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET-CCT Mendoza. Mendoza, Argentina. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo. Mendoza, Argentina.
  • Pablo E. Villagra Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA). Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET-CCT Mendoza. Mendoza, Argentina. Facultad de Ciencias Agrarias, Universidad Nacional de Cuyo. Mendoza, Argentina.

DOI:

https://doi.org/10.25260/EA.21.31.1.0.1158

Palabras clave:

profundidad, estabilidad del suelo, amonio, fosfato

Resumen

Las costras biológicas del suelo (CBS) son asociaciones entre cianobacterias, algas verdes, líquenes, musgos y partículas de suelo. Las costras cumplen múltiples funciones ecosistémicas tales como la fijación de nitrógeno atmosférico y la estabilización de suelos. El presente trabajo tiene como objetivo evaluar condiciones de propagación de distintos tipos funcionales de CBS (dominadas por cianobacterias, cianolíquenes, ficolíquenes y musgos) que posean potencial para la recuperación de suelos degradados. En vivero, se cultivaron diferentes tipos funcionales de CBS recolectadas en el desierto del Monte, Argentina, combinando tratamientos de siembra (CBS triturada o agregada en trozos) y fertilidad (sustrato con o sin estiércol de cabra). Las variables medidas como indicadoras de desarrollo y funcionalidad de CBS fueron la cobertura total de CBS y de cada tipo funcional, la profundidad alcanzada por la CBS, la estabilidad del suelo, y las concentraciones de amonio y fosfato. La cobertura total de CBS aumentó en 19 meses. La siembra triturada favoreció el desarrollo y funcionalidad de la CBS, en particular en las macetas sembradas con cianolíquenes, ficolíquenes y musgos. La adición de fertilizante redujo la cobertura total de CBS dominadas por ficolíquenes y musgos. La profundidad de la CBS y la estabilidad del suelo aumentaron respecto al suelo desnudo en macetas dominadas por líquenes y musgos, y estuvieron favorecidas por la siembra triturada. La concentración de nutrientes dependió del tipo funcional de CBS; en comparación con el suelo desnudo, fue menor en todos los casos. Se concluye que el cultivo de CBS en invernadero, bajo tratamientos de siembra triturada y sin fertilizante, favoreció la cobertura y profundidad de CBS y aumentó la estabilidad de los suelos. Estos resultados facilitan el diseño de estrategias de restauración de tierras secas, que incluyan a las CBS como estabilizadoras de suelos.

Citas

Ahmadjian, V., and J. B. Jacobs. 1981. Relationship between fungus and alga in the lichen Cladonia cristatella Tuck. Nature 289:169. https://doi.org/10.1038/289169a0.

Antoninka, A., M. A. Bowker, P. Chuckran, N. N. Barger, S. Reed, and J. Belnap. 2018. Maximizing establishment and survivorship of field-collected and greenhouse-cultivated biocrusts in a semi-cold desert. Plant and Soil 429:213-225. https://doi.org/10.1007/s11104-017-3300-3.

Antoninka, A., M. A. Bowker, S. C. Reed, and K. Doherty. 2016. Production of greenhouse grown biocrust mosses and associated cyanobacteria to rehabilitate dryland soil function. Restoration Ecology 24:324-335. https://doi.org/10.1111/rec.12311.

Aranibar, J. N., I. C. Anderson, S. Ringrose, and S. A. Macko. 2003. Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. Journal of Arid Environments 54:345-358. https://doi.org/10.1006/jare.2002.1094.

Barton K. 2018. MuMIn: Multi-Model Inference. R package version 1.42.1. URL: cran.r-project.org/package=MuMIn.

Belnap, J. 1993. Recovery rates of cryptobiotic crusts: inoculant use and assessment methods. Great Basin Naturalist 53:89-95.

Belnap, J. 2002. Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biology and Fertility of Soils 35:128-135. https://doi.org/10.1007/s00374-002-0452-x.

Belnap, J., and O. L. Lange. 2001. Biological soil crusts: Structure, function, and management. Springer-Verlag, Berlin, Heidelberg.

Bessega, C., M. Cony, B. O. Saidman, R. Aguiló, P. E. Villagra, J. A. Álvarez, C. Pometti, and J. C. Vilardi. 2019. Genetic diversity and differentiation among provenances of Prosopis flexuosa DC (Leguminosae) in a progeny trial: Implications for arid land restoration. Forest Ecology and Management 443:59-68. https://doi.org/10.1016/j.foreco.2019.04.016.

Bowker, M. A., J. Belnap, V. B. Chaudhary, and N. C. Johnson. 2008. Revisiting classic water erosion models in drylands: the strong impact of biological soil crusts. Soil Biology and Biochemistry 40:2309-2316. https://doi.org/10.1016/j.soilbio.2008.05.008.

Bowker, M. A., J. Belnap, and M. E. Miller. 2006. Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangeland Ecology and Management 59:519-529. https://doi.org/10.2111/05-179R1.1.

Bowker, M. A., R. L. Mau, F. T. Maestre, C. Escolar, and A. P. Castillo‐Monroy. 2011. Functional profiles reveal unique ecological roles of various biological soil crust organisms. Functional Ecology 25:787-795. https://doi.org/10.1111/j.1365-2435.2011.01835.x.

Büdel, B., U. Karsten, and F. García-Pichel. 1997. Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives in exposed, rock-inhabiting cyanobacterial lichens. Oecologia 112:165-172. https://doi.org/10.1007/s004420050296.

Cabrera, A. L. 1976. Regiones fitogeográficas argentinas. Enciclopedia Argentina de Agricultura y Jardinería (2da. Ed.). Tomo II, Fase 1 ACME, Buenos Aires. Pp. 85.

Casas, C., M. Brugués, R. M. Cros, and C. Sérgio. 2006. Handbook of Mosses of the Iberian Peninsula and the Balearic Islands. Institut d’Estudis Catalans, Barcelona.

Chiquoine, L. P., S. R. Abella, and M. A. Bowker. 2016. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem. Ecological Applications 26:1260-1272. https://doi.org/10.1002/15-0973.

Corvalán Videla, M. E., M. D. L. A. Taboada, and J. N. Aranibar. 2018. Diversidad de cianobacterias en costras biológicas de suelo de la ecorregión del Monte Central (Mendoza, Argentina). Lilloa 55:30-46. https://doi.org/10.30550/j.lil/2018.55.2/4.

Crain, G., J. McLaren, B. Brunner, and A. Darrouzet-Nardi. 2018. Biologically Available Phosphorus in Biocrust-Dominated Soils of the Chihuahuan Desert. Soil Systems 2:56. https://doi.org/10.3390/soilsystems2040056.

Dalmasso, A. D. 2010. Revegetación de áreas degradadas con especies nativas. Boletín de la Sociedad Argentina de Botánica 45:149-171.

Delignette-Muller, M. L., and C. Dutang. 2015. fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software 64(4):1-34. URL: http://www.jstatsoft.org/v64/i04/. https://doi.org/10.18637/jss.v064.i04.

Eldridge, D. J., and J. F. Leys. 2003. Exploring some relationships between biological soil crusts, soil aggregation and wind erosion. Journal of Arid Environments 53:457-466. https://doi.org/10.1006/jare.2002.1068.

Eldridge, D. J., D. Freudenberger, and T. B. Koen. 2006. Diversity and abundance of biological soil crust taxa in relation to fine and coarse-scale disturbances in a grassy eucalypt woodland in eastern Australia. Plant and Soil 281:255-268. https://doi.org/10.1007/s11104-005-4436-0.

Fernández, M. E., C. B. Passera, and M. A. Cony. 2016. Sapling growth, water status and survival of two native shrubs from the Monte Desert, Mendoza, Argentina, under different preconditioning treatments. Revista de la Facultad de Ciencias Agrarias 48:110-125.

Frey, W., and H. Kürschner. 2011. Asexual reproduction, habitat colonization and habitat maintenance in bryophytes. Flora-Morphology, Distribution, Functional Ecology of Plants 206:173-184. https://doi.org/10.1016/j.flora.2010.04.020.

Gao, L., M. A. Bowker, M. Xu, H. Sun, D. Tuo, and Y. Zhao. 2017. Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biology and Biochemistry 105:49-58. https://doi.org/10.1016/j.soilbio.2016.11.009.

Garibotti, I. A., M. González Polo, and S. Tabeni. 2018. Linking biological soil crust attributes to the multifunctionality of vegetated patches and interspaces in a semiarid shrubland. Functional Ecology 32:1065-1078. https://doi.org/10.1111/1365-2435.13044.

García, V. R., J. N. Aranibar, and N. Pietrasiak. 2015. Multiscale effects on biological soil crusts cover and spatial distribution in the Monte Desert. Acta Oecologica 69:35-45. https://doi.org/10.1016/j.actao.2015.08.005.

Gichangi, E. M., and P. N. S. Mnkeni. 2009. Effects of goat manure and lime addition on phosphate sorption by two soils from the Transkei Region, South Africa. Communications in Soil Science and Plant Analysis 40:3335-3347. https://doi.org/10.1080/00103620903325943.

Giraldo‐Silva, A., C. Nelson, C. Penfold, N. N. Barger, and F. García‐Pichel. 2019. Effect of preconditioning to the soil environment on the performance of 20 cyanobacterial cultured strains used as inoculum for biocrust restoration. Restoration Ecology. https://doi.org/10.1111/rec.13048.

Goirán, S. B., J. N. Aranibar, and M. L. Gómez. 2012. Heterogeneous spatial distribution of traditional livestock settlements and their effects on vegetation cover in arid groundwater coupled ecosystems in the Monte desert (Argentina). Journal of Arid Environments 87:188-197. https://doi.org/10.1016/j.jaridenv.2012.07.011.

Gómez, D. A., J. N. Aranibar, S. Tabeni, P. E. Villagra, I. A. Garibotti, and A. Atencio. 2012. Biological soil crust recovery after long-term grazing exclusion in the Monte Desert (Argentina). Changes in coverage, spatial distribution, and soil nitrogen. Acta Oecologica 38:33-40. https://doi.org/10.1016/j.actao.2011.09.001.

Heinken, T. 1999. Dispersal patterns of terricolous lichens by thallus fragments. The Lichenologist 31:603-612. https://doi.org/10.1017/S0024282999000791. https://doi.org/10.1006/lich.1999.0219.

Herrick, J. E., W. G. Whitford, A. G. De Soyza, J. W. Van Zee, K. M. Havstad, C. A. Seybold, and M. Walton. 2001. Field soil aggregate stability kit for soil quality and rangeland health evaluations. Catena 44:27-35. https://doi.org/10.1016/S0341-8162(00)00173-9.

Irshad, M., A. E. Eneji, Z. Hussain, Z., and M Ashraf. 2013. Chemical characterization of fresh and composted livestock manures. Journal of Soil Science and Plant Nutrition 13:115-121. https://doi.org/10.4067/S0718-95162013005000011.

Komárek, J., and J. R. Johansen. 2015. Filamentous cyanobacteria. In Freshwater Algae of North America . Academic Press. https://doi.org/10.1016/B978-0-12-385876-4.00004-9.

Kröpfl, A. I., V. A. Deregibus, and G. A. Cecchi. 2007. Disturbios en una estepa arbustiva del Monte: cambios en la vegetación. Ecología Austral 17:257-268.

Lange, O. L., T. A. Green, and U. Heber. 2001. Hydration-dependent photosynthetic production of lichens: what do laboratory studies tell us about field performance? Journal of Experimental Botany 52:363. https://doi.org/10.1093/jexbot/52.363.2033.

Maestre, F. T., N. Martín, B. Díez, R. Lopez-Poma, F. Santos, I. Luque, and J. Cortina. 2006. Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils. Microbial Ecology 52:365-377. https://doi.org/10.1007/s00248-006-9017-0.

Mager, D. M., and A. D. Thomas. 2011. Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. Journal of Arid Environments 75:91-97. https://doi.org/10.1016/j.jaridenv.2010.10.001.

Mallen-Cooper, M., and D. J. Eldridge. 2016. Laboratory-based techniques for assessing the functional traits of biocrusts. Plant and Soil 406:131-143. https://doi.org/10.1007/s11104-016-2870-9.

McCalley, C. K., and J. P. Sparks. 2008. Controls over nitric oxide and ammonia emissions from Mojave Desert soils. Oecologia 156:871-881. https://doi.org/10.1007/s00442-008-1031-0.

Mupondi, L. T., P. N. S. Mnkeni, and M. O. Brutsch. 2006. The effects of goat manure, sewage sludge and effective microorganisms on the composting of pine bark. Compost Science and Utilization 14:201-210. https://doi.org/10.1080/1065657X.2006.10702284.

Nash III, T. H., B. D. Ryan, C. Gries, and F. Bungartz. 2002. Lichen Flora of the Greater Sonora Desert Region, vol. 1. Lichen Unlimited, Tempe, Arizona, USA.

Nash III, T. H., B. D. Ryan, P. Diederich, C. Gries, and F. Bungartz. 2001. Lichen Flora of the Greater Sonora Desert Region, vol 2. Lichen Unlimited, Tempe, Arizona, USA.

Nash III, T. H., C. Gries, and F. Bungartz. 2001. Lichen Flora of the Greater Sonora Desert Region, vol. 3. Lichen Unlimited, Tempe, Arizona, USA.

Okalebo, J. R., K. W. Gathua, and P. L. Woomer. 1993. Laboratory methods of soil and plant analysis: A Working Manual. Second edition. Sacred Africa, Nairobi, Kenya.

Pietrasiak, N., J. U. Regus, J. R. Johansen, D. Lam, J. L. Sachs, and L. S. Santiago. 2013. Biological soil crust community types differ in key ecological functions. Soil Biology and Biochemistry 65:168-171. https://doi.org/10.1016/j.soilbio.2013.05.011.

Read, C. F., D. H. Duncan, P. A. Vesk, and J. Elith. 2014. Biocrust morphogroups provide an effective and rapid assessment tool for drylands. Journal of Applied Ecology 51:1740-1749. https://doi.org/10.1111/1365-2664.12336.

RStudio Team. 2015. RStudio: Integrated Development for R. RStudio, Inc., Boston, MA. URL: http://www.rstudio.com/.

Rosentreter, R. 2020. Biocrust lichen and moss species most suitable for restoration projects. Restoration Ecology 28:67-74. https://doi.org/10.1111/rec.13082.

Sanders, W. B., and R. Lücking. 2002. Reproductive strategies, relichenization and thallus development observed in situ in leaf‐dwelling lichen communities. New Phytologist 155:425-435. https://doi.org/10.1046/j.1469-8137.2002.00472.x.

Sartor, C. E. 2015. Influencia de Prosopis flexuosa sobre el establecimiento de gramíneas perennes en dos sitios del Monte mendocino. Tesis de doctorado en Ciencias Biológicas. Universidad Nacional de Córdoba, Córdoba. Argentina. Pp. 139.

Segui, N. S. 2019. Técnicas de restauración en zonas áridas de Mendoza: supervivencia y crecimiento de plantines de Prosopis flexuosa y Prosopis chilensis con distinta época de trasplante y procedencia. Tesis de grado. Ingeniera en Recursos Naturales Renovables. Universidad Nacional de Cuyo, Mendoza. Argentina. Pp. 71.

Servicio Meteorológico Nacional. 2018. Estadísticas climáticas normales. Datos Meteorológicos horarios. URL: www.smn.gob.ar/descarga-de-datos. Consultado en Diciembre 2020.

Slate, M. L., R. A. Durham, and D. E. Pearson. 2019. Strategies for restoring the structure and function of lichen‐moss biocrust communities. Restoration Ecology. https://doi.org/10.1111/rec.12996.

Su, Y. G., X. R. Li, Y. W. Cheng, H. J. Tan, and R. L. Jia. 2007. Effects of biological soil crusts on emergence of desert vascular plants in North China. Plant Ecology 191:11-19. https://doi.org/10.1007/s11258-006-9210-8.

Tamm, A., J. Caesar, N. Kunz, C. Colesie, H. Reichenberger, and B. Weber. 2018. Ecophysiological properties of three biological soil crust types and their photoautotrophs from the Succulent Karoo, South Africa. Plant and Soil 429:127-146. https://doi.org/10.1007/s11104-018-3635-4.

Villagra, P. E., E. Cesca, J. Álvarez, F. Rojas, M. Bourguet, C. Rubio, and P. Mastrángelo. 2010. Anexo II - Documento de Ordenamiento de Bosques Nativos de la Provincia de Mendoza. Secretaría de Medio Ambiente. Dirección de Recursos Naturales Renovables. Gobierno de Mendoza. Pp. 65.

Villagra, P. E., G. E. Defossé, H. F. Del Valle, S. Tabeni, M. Rostagno, E. Cesca, and E. Abraham. 2009. Land use and disturbance effects on the dynamics of natural ecosystems of the Monte Desert. Implications for their management. Journal of Arid Environments 73:202-211. https://doi.org/10.1016/j.jaridenv.2008.08.002.

Villagra, P. E., and J. A. Álvarez. 2019. Determinantes ambientales y desafíos para el ordenamiento forestal sustentable en los algarrobales del Monte, Argentina. Ecología Austral 29:146-155. https://doi.org/10.25260/EA.19.29.1.0.752.

Wang, W., Y. Liu, D. Li, C. H, and B. Rao. 2009. Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biology and Biochemistry 41:926-929. https://doi.org/10.1016/j.soilbio.2008.07.001.

Weatherburn, M. W. 1967. Phenolehypochlorite reaction for determination of ammonia. Analytical Chemistry 39:971-974. https://doi.org/10.1021/ac60252a045.

Weber, B., B. Büdel, and J. Belnap. 2016. Biological soil crusts: an organizing principle in drylands. Springer. Berlin, Heidelberg, New York. https://doi.org/10.1007/978-3-319-30214-0.

Whitehouse, H. L. K. 1980. The production of protonemal gemmae by mosses growing in deep shade. Journal of Bryology 11:133-138. https://doi.org/10.1179/jbr.1980.11.1.133.

Wei, T., and V. Simko. 2017. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). URL: github.com/taiyun/corrplot.

Williams, A. J., B. J. Buck, and M. A. Beyene. 2012. Biological soil crusts in the Mojave Desert, USA: Micromorphology and pedogenesis. Soil Science Society of America Journal 76:1685-1695. https://doi.org/10.2136/sssaj2012.0021.

Wong, C. S., and W. K. Li. 1998. A note on the corrected Akaike information criterion for threshold autoregressive models. Journal of Time Series Analysis 19:113-124. https://doi.org/10.1111/1467-9892.00080.

Yoshimura, I., T. Kurokawa, Y. Yamamoto, and Y. Kinoshita. 1993. Development of lichen thalli in vitro. Bryologist 96(3):412-421. https://doi.org/10.2307/3243871.

Zhao, Y. G., M. X. Xu, and J. Belnap. 2010. Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China. Journal of Arid Environments 74:1186-1191. https://doi.org/10.1016/j.jaridenv.2010.04.006.

Zhao, Y., and M. Xu. 2012. Runoff and soil loss from revegetated grasslands in the hilly Loess Plateau region, China: influence of biocrust patches and plant canopies. Journal of Hydrologic Engineering 18:387-393. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000633.

Propagación de distintos tipos funcionales de la costra biológica del suelo del desierto del Monte, Argentina

Descargas

Archivos adicionales

Publicado

2021-02-19

Cómo citar

García, V., Aranibar, J., & Villagra, P. E. (2021). Propagación de distintos tipos funcionales de la costra biológica del suelo del desierto del Monte, Argentina. Ecología Austral, 31(1), 001–016. https://doi.org/10.25260/EA.21.31.1.0.1158