Tamaño corporal y fecundidad de Hemileius suramericanus (Acari: Oribatida) en un bosque nativo del sudeste de Buenos Aires

Autores/as

  • Natalia A. Fredes Departamento de Biología, Universidad Nacional de Mar del Plata. Consejo Nacional de Investigaciones Científicas y Técnicas - CONICET.
  • Pablo A. Martínez Departamento de Biología, Universidad Nacional de Mar del Plata.

Palabras clave:

ácaros, oribátidos, poblaciones, Celtis tala, Mar Chiquita, Argentina

Resumen

Este trabajo analiza las variaciones en el tamaño corporal y la fecundidad de un microartrópodo edáfico en el suelo de un bosque nativo y en la matriz de vegetación circundante. Hemileius suramericanus (Hammer 1958) es un ácaro oribátido de amplia distribución en suelos de la Región Neotropical. Se estudió la variación en el largo y el ancho corporal de machos y hembras, y en el número de huevos portados por las hembras en suelos de un bosque nativo de Celtis tala y del ambiente vecino dominado por gramíneas. Relevamos dos parches de bosque de áreas diferentes y la matriz circundante (pastizal), en el Partido de Mar Chiquita, Buenos Aires, Argentina. Dividimos cada parche en centro y periferia, donde, además de la población de H. suramericanus, registramos la cobertura de mantillo y la resistencia mecánica del suelo como estimador del grado de compactación. Las hembras de H. suramericanus fueron de mayor tamaño que los machos y las del pastizal fueron las de menor ancho corporal. Los machos del pastizal fueron los más pequeños en largo y ancho corporal. Las mayor frecuencia de hembras del parche de bosque más grande portaron dos huevos, mientras que en el pastizal y en la periferia del parche más chico la frecuencia más alta fue de hembras sin huevos. La resistencia mecánica fue mayor en el pastizal que en los parches de bosque. Se propone que la presencia de mantillo y la compactación del suelo pueden ser factores que condicionan el tamaño corporal y la fecundidad, principalmente a través de su efecto sobre la disponibilidad de alimento.

Citas

ALTESOR, A; G PIÑEIRO; F LEZAMA; RB JACKSON; M SARASOLA & JM PARUELO. 2006. Ecosystem changes associated with grazing in subhumid South American grasslands. J. Veg. Sci., 17:323-332.

BADEJO, M; J ESPÍNDOLA; J GUERRA; A DE AQUINO & M CORREA. 2002. Soil oribatid mite communities under three species of legumes in an ultisol in Brazil. Exp. Appl. Acarol., 27:283-296.

BALOGH, J & P BALOGH. 1988. Oribatid mite of the Neotropical Region II. Elsevier Science Publishig. Amsterdam. Pp. 332.

BALOGH, J & P BALOGH. 1992. The oribatid mite genera of the Word. Volume I. Hungarian Natural History Museum. Budapest. Pp. 375.

BALOGH, P & P BALOGH. 1990. Oribatid mite of the Neotropical Region I. Elsevier Science Publishing. Amsterdam. Pp. 334.

BATTIGELLI, J; R SPENCER; DW LANGOR & SM BERCH. 2004. Short-term impact of forest soil compaction and organic matter removal on soil mesofauna density and oribatid mite diversity. Can. J. For. Res., 34:1136-1149.

BRADFORD, JM. 1986. Penetrability. Pp. 463-478 en: Klute, A (ed.). Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. American Society of Agronomy, Madison, WI. USA.

BRELAND, TA & S HANSEN. 1996. Nitrogen mineralization and microbial biomass as affected by soil compaction. Soil Biol. Biochem., 28:655-663.

CICCHINO, AC. 2006. Diversidad de carábidos (Insecta, Coleoptera, Carabidae) de un talar joven de la laguna Nahuel Rucá, Partido de Mar Chiquita, Provincia de Buenos Aires. Pp. 137-145 en: MÉRIDA, E & J ATHOR (eds.). Talares bonaerenses y su conservación. Fundación de Historia Natural “Félix de Azara”. Buenos Aires.

CROSSLEY JR, DA & KK BOHNSACK. 1960. Long-Term Ecological Study in the Oak Ridge Area: III. The oribatid mite fauna in pine litter. Ecology, 41: 628-638.

CRAWLEY, MJ. 2007. The R book. John Wiley and Sons, England. Pp. 942.

DENMARK, HA & JP WOODRING. 1965. Feeding habits of Hemileius new species (Acari: Cryptostigmata: Oribatulidae) on Florida orchids. Fla. Entomol., 48:9-16.

DUCARME, X & P LEBRUN. 2004. Spatial microdistribution of mites and organic matter in soils and caves. Biol. Fertil. Soil., 39:457-466.

FISHER, K; PM BRAKEFIELD & BJ ZWAAN. 2003. Plasticity in butterfly egg size: why larger offspring at lower temperatures? Ecology, 84:3138-3147.

FREDES, NA; PA MARTÍNEZ; V BERNAVA LABORDE; & ML OSTERRIETH. 2009. Microartrópodos como indicadores de disturbio antrópico en entisoles del área recreativa de Miramar, Argentina. Ci. Suelo, 27:89-101.

FUJIKAWA, T. 1987a. Biological features of Punctoribates insignis Berlese in nature farming field. Edaphologia, 36:13-20.

FUJIKAWA, T. 1987b. Biology of Oribatula sakamorii Aoki, a dominant species of the oribatid fauna in nature farming field. Pp. 544-552 en: STRIGATOVA, BR (ed.). Soil fauna and fertility. Proc. 9th Int. Congr. Soil Zool. Moscow.

HAENE, E. 2006. Caracterización y conservación de talares bonaerenses. Pp. 46-70 en: Mérida, E & J Athor (eds.).Talares bonaerenses y su conservación. Fundación de Historia Natural “Félix de Azara”. Buenos Aires.

HAMMER, M. 1958. Investigations on the oribatid fauna of the Andes mountains I. The Argentine and Bolivia. Biol. Skr.Vid. Selsk., 10:1-146.

HANSEN, R. 2000. Effects of habitat complexity and composition on a diverse litter microarthropod assemblage. Ecology, 81:1120-1132.

HANSEN, R & DC COLEMAN. 1998. Litter complexity and composition are determinants of the diversity and species composition of oribatid mites (Acari: Oribatida) in litterbags. Appl. Soil Ecol., 9:17-23.

HORLENT, M; M ARTURI; JM CELLINI; D PÉREZ PASCAL; JM BUUS; ET AL. 2003. Crecimiento y competencia intraespecífica en Celtis tala en el este de Buenos Aires. Agriscientia, 20:79-84.

KANEKO, N & EF SALAMANCA. 1999. Mixed leaf litter effects on decomposition rates and soilmicroarthropod communities in an oak-pine stand in Japan. Ecol. Research, 14:131-138.

KLIRONOMOS, JN & B KENDRICK. 1995. Relationships among microarthropods, fungi, and their environment. Plant Soil, 170:183-197.

MARAUN, M & S SCHEU. 2000. The Structure of Oribatid Mite Communities (Acari, Oribatida): Patterns, Mechanisms and Implications for Future Research. Ecography, 23:374-383.

MCELROY, C; WH JONES & FA RINEHART. 1952. An investigation of the soil microflora of two grassland plots. Proc. Okla. Acad. Sci., 33:163-168.

NORTON, RA. 1994. Evolutionary aspects of oribatid mite life histories and consequences for the origin of the astigmata. Pp. 99-135 en: Houck, M (ed.). Mites: ecological and evolutionary analyses of life- history patterns. Chapman y Hall, New York.

ODUM, EP & GW BARRET. 2006. Fundamentos de ecología. 5a. Ed. Thomson, México. Pp. 598.

OLIVEIRA, AR; GJ MORAES & LCCB FERRAZ. 2007. Consumption rate of phytonematodes by Pergalumna sp. (Acari: Oribatida: Galumnidae) under laboratory conditions determined by a new method. Exp Appl. Acarol., 41:183-189.

PLAISTOW, SJ; CP LAPSLEY & TG BENTON. 2006. Context- dependent intergenerational effect: the interaction between past and present environments and its effects on population dynamics. Am. Nat., 167:206-215.

PRINZING, A; P LENTZCH; F VOIGT & S WOAS. 2004. Habitat stratification strtatifies a local population: ecomorphological evidence from a bisexual, mobile invertebrate (Carabodes labyrinthicus; Acari). Ann. Zool. Fennici, 41:399-412.

PRZYBYLO, R; BC SHELDON & J. MERILÄ. 2000.Climatic efects on breeding and morphology: evidence for phenotypic plasticity. J. Animal Ecol., 69: 395-403.

R DEVELOPMENT CORE TEAM. 2007. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org (accedido el 20/09/10).

SALAZAR MARTÍNEZ, A; C ACCATTOLI & JA SCHNACK. 2007. Oribátidos arborícolas del “Paseo del Bosque” (La Plata, Provincia de Buenos Aires, Argentina). Rev. Soc. Entomol. Argent., 66:159-163.

SCAMPINI, EM; ML OSTERRIETH & PA MARTÍNEZ. 2000. Estudio de las propiedades físico-químicas y mesofauna en una bordura del cordón hortícola de Laguna de Los Padres, provincia de Buenos Aires, Argentina. Neotrópica, 46:3-10.

SCHATZ, H. 1998. Review Oribatid mites of the Galápagos Islands - faunistics, ecology and speciation. Exp. Appl. Acarol., 22:373-409.

SCHNEIDER, K; S MIGGE; RA NORTON; S SCHEU; R LANGEL; ET AL. 2004.Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol. Biochem., 36:1769-1774.

SENICZAK, A. 1998. Preliminary studies on the influence of food on the development and morphology of Archegozetes longisetosus Aoki (Acari, Oribatida) in laboratory conditions. Zesz. Nauk Akad. Tovarysztwa Roln. Bydgoszczy, Ochrona Srodowiska, 2:175-180.

SUBÍAS, LS. 2004. Listado sistemático, sinonímico y biogeográfico de los ácaros oribátidos (Acariformes, Oribatida) del mundo (1758-2002). Graellsia, 60:3-305.

STAMOU, GP & SP SGARDELIS. 1989. Seasonal Distribution Patterns of Oribatid Mites (Acari: Cryptostigmata) in a Forest Ecosystem. J. Animal Ecol., 58:893-904.

TRAVÉ, J; HM ANDRÉ; G TAVERLY & F BERNINI. 1996. 10. Biologies des populations. Pp. 75-85 en: Travé, J; HM André; G Taverly & F Bernini (eds.). Les Acariens Oribates. Éditions AGAR et SIALF.

ZUUR, AF; EN IENO; NJ WALKER; AA SAVELIEV & GM SMITH. 2009. Mixed Effects Models and Extensions in Ecology with R. Springer. USA. Pp. 574.

Descargas

Publicado

2010-12-01

Cómo citar

Fredes, N. A., & Martínez, P. A. (2010). Tamaño corporal y fecundidad de Hemileius suramericanus (Acari: Oribatida) en un bosque nativo del sudeste de Buenos Aires. Ecología Austral, 20(3), 293–301. Recuperado a partir de https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1308