Floraciones tóxicas de cianobacterias en una laguna pampeana: Una aproximación a su ecología desde los rasgos morfofisiológicos

Autores/as

  • Fiorella Cocciolo Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
  • Lilen Yema Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
  • M. Laura Sánchez
  • Carolina González Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. Centro de investigaciones, Agua y Saneamientos Argentinos, CABA, Argentina.
  • Inés O'Farrell Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina

DOI:

https://doi.org/10.25260/EA.21.31.3.0.1514

Palabras clave:

Cyanobacteria, eutrofización, cianotoxinas, Salada de Monasterio

Resumen

Se realizó la caracterización ecológica del ensamble de cianobacterias formadoras de floraciones de la laguna Salada de Monasterio (SM), provincia de Buenos Aires. Se detectó que la abundancia, la biomasa y la morfología de las especies estuvieron afectadas por las condiciones ambientales de la laguna durante dos períodos cálidos con diferentes niveles hídricos que incidieron en la turbidez y la concentración de fósforo. SM estuvo seriamente afectada por floraciones de cianobacterias tóxicas dominadas por Raphidiopsis mediterranea, acompañada por Planktothrix agardhii, Anabaenopsis cf. circularis, A. cunningtonii y Cuspidothrix issatschenkoi en el primer período, y por C. issatschenkoi en el segundo. La abundancia y el biovolumen total de ambos períodos se correlacionaron positivamente y se registró una menor densidad de cianobacterias en el segundo período, con mayor nivel hídrico. En ambos períodos se superó tanto el nivel de alerta 2 para agua de bebida como el nivel guía 2 para aguas de recreación (Organización Mundial de la Salud, OMS) para la abundancia de células de cianobacterias. Entre las especies se detectaron diferencias morfológicas asociadas a respuestas a la disponibilidad de la luz en la columna de agua. En R. mediterranea se evidenció una asociación directa entre la longitud y el ancho del filamento que favorece el desarrollo, incluso en escenarios con elevada turbidez y limitación de luz, donde las demás especies no fueron detectadas. El nitrógeno orgánico disuelto (NOD) sería la fuente principal de nitrógeno debido a su elevada concentración (media: 3.76 mg/L). La frecuencia de acinetas en Anabaenopsis y C. issatschenkoi fue baja, lo que indica un escenario favorable para su desarrollo. La concentración de microcistina (-LR e -YR) en el primer período superó 1 µg/L (nivel guía OMS), siendo P. agardhii y Anabaenopsis las potenciales productoras de esta toxina; no se detectó saxitoxina.

Citas

Aguilera, A., S. Haakonsson, M. V. Martin, G. L. Salerno, and R. O. Echenique. 2017. Bloom-forming cyanobacteria and cyanotoxins in Argentina: A growing health and environmental concern. Limnologica 69:103-114. https://doi.org/10.1016/j.limno.2017.10.006.

Aguilera, A., L. Aubriot, R. O. Echenique, J. L. Donadelli, and G. L. Salerno. 2019. Raphidiopsis mediterranea (Nostocales) exhibits a flexible growth under light and nutrient fluctuations in contrast to Planktothrix agardhii (Oscillatoriales). Hydrobiologia 839:145-157. https://doi.org/10.1007/s10750-019-04002-5.

Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry, R. Escaray, and I. Izaguirre. 2009. Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624:45-60. https://doi.org/10.1007/s10750-008-9665-9.

APHA AWWA WEF. 2005. Standard methods for the examination of water and wastewater 21:5-72. Eds American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), Washington, DC, USA.

Berg, G. M., P. M. Glibert, N. O. Jørgensen, M. Balode, and I. Purina. 2001. Variability in inorganic and organic nitrogen uptake associated with riverine nutrient input in the Gulf of Riga, Baltic Sea. Estuaries 24(2):204-214. https://doi.org/10.2307/1352945.

Berman, T. 2001. The role of DON and the effect of N: P ratios on occurrence of cyanobacterial blooms: implications from the outgrowth of Aphanizomenon in Lake Kinneret. Limnology and Oceanography 46:443-447. https://doi.org/10.4319/lo.2001.46.2.0443.

Bernard, C., A. Ballot, S. Thomazeau, S. Maloufi, A. Furey, et al. 2016. Appendix 2: Cyanobacteria associated with the production of cyanotoxins. Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis 501-525. https://doi.org/10.1002/9781119068761.app2.

Brasil, J., J. L. Attayde, F. R. Vasconcelos, D. D. Dantas, and V. L. Huszar. 2016. Drought-induced water-level reduction favors cyanobacteria blooms in tropical shallow lakes. Hydrobiologia 770:145-164. https://doi.org/10.1007/s10750-015-2578-5.

Carey, C. C., B. W. Ibelings, E. P. Hoffmann, D. D. Hamilton, and J. D. Brookes. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water research 46:1394-1407. https://doi.org/10.1016/j.watres.2011.12.016.

Carmichael, W. W. 1992. Cyanobacteria secondary metabolites - the cyanotoxins. Journal of applied bacteriology 72:445-459. https://doi.org/10.1111/j.1365-2672.1992.tb01858.x.

Carmichael, W. W. 2001. Health effects of toxin- producing cyanobacteria: “The CyanoHABs”. Human and ecological risk assessment: An International Journal 7:1393-1407. https://doi.org/10.1080/20018091095087.

Chorus, I., and J. Bartram. 1999. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. E and FN Spon, New York. https://doi.org/10.1201/9781482295061.

Chorus, I. 2012. Cyanotoxins: occurrence, causes, consequences. Federal Environment Agency (Umweltbundesamt), Germany.

Diovisalvi, N., V. Y. Bohn, M. C. Piccolo, G. M. E. Perillo, C. Baigún, and H. E. Zagarese. 2015. Shallow lakes from the Central Plains of Argentina: an overview and worldwide comparative analysis of their basic limnological features. Hydrobiologia 752:5-20. https://doi.org/10.1007/s10750-014-1946-x.

Dow, C. S., and U. K. Swoboda. 2000. Cyanotoxins. Pp. 613-632 in B. A. Wihtton and M. Potts. (eds.). The ecology of Cyanobacteria. Kluwer Academic Publishers. Dordrecht. https://doi.org/10.1007/0-306-46855-7_22.

Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography 51:2388-2397. https://doi.org/10.4319/lo.2006.51.5.2388.

Fabre, A., C. Carballo, E. Hernández, P. Piriz, L. Bergamino, L. Mello, S. González, G. Pérez, J. León, L. Aubriot, S. Bonilla, and C. Kruk. 2010. El nitrógeno y la relación zona eufótica/zona de mezcla explican la presencia de cianobacterias en pequeños lagos subtropicales, artificiales de Uruguay. Pan-American Journal of Aquatic Sciences 5(1):112-125.

Ferber, L. R., S. N. Levine, A. Lini, and G. P. Livingston. 2004. Do cyanobacteria dominate in eutrophic lakes because they fix nitrogen? Freshwater Biology 49:690-708. https://doi.org/10.1111/j.1365-2427.2004.01218.x.

Fernández Cirelli, A., and P. Miretzky. 2002. Lagos poco profundos de la Pampa Argentina. Relación con aguas subterráneas someras. Pp. 43-52 en A. Fernández Cirelli and G. Chalar Marquesá (eds.). El agua en Iberoamérica. De la limnología a la gestión en Sudamérica. CYTED XVII, CETA—Centro de estudios Transdisciplinarios del Agua, Facultad de Ciencias Veterinarias, Buenos Aires, Argentina.

Figueredo C., G. VonRückert, A. Cupertino, M. Pontes, L. Fernandes, et al. 2014. Lack of nitrogen as a causing agent of Cylindrospermopsis raciborskii intermittent blooms in a small tropical reservoir. FEMS Microbiology Ecology 87:557-567. https://doi.org/10.1111/1574-6941.12243.

Gupta, N., S. C. Pant, R. Vijayaraghavan, and P. L. Rao. 2003. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 188:285-296. https://doi.org/10.1016/S0300-483X(03)00112-4.

Hillebrand, H., C. Dürselen, D. Kirschtel, U. Pollingher, and T. Zohary. 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of phycology 35:403-424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x.

Huisman, J., G. A. Codd, H. W. Paerl, B. W. Ibelings, J. M. H. Verspagen, and P. M. Visser. 2018. Cyanobacterial blooms. Nature Reviews Microbiology 16:471-483. https://doi.org/10.1038/s41579-018-0040-1.

Iachetti, C. M., and M. E. Llames. 2015. Light limitation helps stabilize the phytoplankton assemblage steady-state in a temperate and highly turbid, hypertrophic shallow lake (Laguna Chascomús, Argentina). Hydrobiologia 752:33-46. https://doi.org/10.1007/s10750-014-2045-8.

Izaguirre I., M. L. Sánchez, M. R. Schiaffino, I. O’ Farrell, P. Huber, et al. 2015. Which environmental factors trigger the dominance of phytoplankton species across a moisture gradient of shallow lakes? Hydrobiología 752:47-64. https://doi.org/10.1007/s10750-014-2007-1.

Jakubowska, N., and E. Szeląg-Wasielewska. 2015. Toxic picoplanktonic cyanobacteria. Marine drugs 13:1497-1518. https://doi.org/10.3390/md13031497.

Jeppensen, E., S. Brucet, L. Naselli-Flores, E. Papastergiadou, K. Stefanidis, et al. 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750:201-227. https://doi.org/10.1007/s10750-014-2169-x.

Kaplan-Levy, R. N., O. Hadas, M. L. Summers, J. Rücker, and A. Sukenik. 2010. Akinetes: dormant cells of cyanobacteria. Pp. 5-27 in E. Lubzens, J. Cerda and M. Clark (eds.). Dormancy and resistance in harsh environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12422-8_2.

Kenesi, G., H. M. Shafik, A. W. Kovács, S. Herodek, and M. Présing. 2009. Effect of nitrogen forms on growth, cell composition and N2 fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures. Hydrobiologia 623(1):191-202. https://doi.org/10.1007/s10750-008-9657-9.

Kirk, J. T. O. 1994. Light and photosynthesis in aquatic ecosystems. Cambridge University Press. https://doi.org/10.2307/2403249.

Kokociński, M., K. Stefaniak, J. Mankiewicz-Boczek, K. Izydorczyk, and J. Soininen. 2010. The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta). Eur J Phycol 45:365-374. https://doi.org/10.1080/09670262.2010.492916.

Komárek, J., and K. Anagnostidis. 2005. Cyanoprokaryota 2 Teil: Oscillatoriales. Pp. 1-179 in B. Büdel, L. Krienitz, G. Gärtner and M. Schagerl (eds.). Süsswasserflora von Mitteleuropa 19/2. Elsevier, München.

Komárek, J. 2013. Cyanoprokaryota 3 Teil: Heterocystous genera. Pp. 1-1129 in B. Büdel, G. Gärtner, L. Krienitz and M. Schagerl (eds.). Süsswasserflora von Mitteleuropa 19/3. Elsevier, Berlin, Heidelberg.

Kurmayer, R., L. Deng, and E. Entfellner. 2016. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful algae 54:69-86. https://doi.org/10.1016/j.hal.2016.01.004.

Litchman, E., P. de Tezanos Pinto, C. A. Klausmeier, M. K. Thomas, and K. Yoshiyama. 2010. Linking traits to species diversity and community structure in phytoplankton. In Fifty years after the Homage to Santa Rosalia: Old and new paradigms on biodiversity in aquatic ecosystems. Springer, Dordrecht 15-28. https://doi.org/10.1007/s10750-010-0341-5.

Lorenzen, C. J. 1967. Determination of chlorophyll and pheo‐pigments: spectrophotometric equations. Limnology and oceanography 12:343-346. https://doi.org/10.4319/lo.1967.12.2.0343.

Merel, S., D. Walker, R. Chicana, S. Snyder, E. Baurès, and O. Thomas. 2013. State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environment International 59:303-327. https://doi.org/10.106/j.envint.2013.06.0.13.

Moss, B. 2010. Ecology of freshwaters: a view for the twenty-first century, fourth edition. Wiley-Blackwell. Chichester, UK.

Moustaka-Gouni, M., K. A. Kormas, P. Polykarpou, S. Gkelis, D. C. Bobori, and E. Vardaka. 2010. Polyphasic evaluation of Aphanizomenon issatschenkoi and Raphidiopsis mediterranea in a Mediterranean lake. Journal of Plankton Research 32:927-936. https://doi.org/10.1093/plankt/fbq019.

Neilan, B. A., L. A. Pearson, J. Muenchhoff, M. C. Moffitt, and E. Dittmann. 2013. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environmental Microbiology 15:1239-1253. https://doi.org/10.1111/j.1462-2920.2012.02729.x.

Nishiwaki-Matsushima, R., S. Nishiwaki, T. Ohta, S. Yoshizawa, M. Suganuma, et al. 1991. Structure‐function relationships of microcystins, liver tumor promoters, in interaction with protein phosphatase. Japanese Journal of Cancer Research 82:993-996. https://doi.org/10.1111/j.1349-7006.1991.tb01933.x.

Nusch, E. A. 1980. Comparison of different methods for chlorophyll and phaeopigment determination. Arch Hydrobiol Beih Ergebn Limnol 14:14-36.

O’Farrell, I., A. Vinocur, and P. de Tezanos Pinto. 2015. Long-term study of bloom-forming cyanobacteria in a highly fluctuating vegetated floodplain lake: a morpho-functional approach. Hydrobiologia 752:91-102. https://doi.org/10.1007/s10750-014-1962-x.

O'Farrell, I., C. Motta, M. Forastier, W. Polla, S. Otaño, et al. 2019. Ecological meta-analysis of bloom-forming planktonic Cyanobacteria in Argentina. Harmful Algae 83:1-13. https://doi.org/10.1016/j.hal.2019.01.004.

Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, D. Mcglinn, et al. 2019. Package Vegan: Community Ecology Package. R package version 2-4.

Paerl, H. W., and J. Huisman. 2008. Blooms like it hot. Science 320:57-58. https://doi.org/10.1126/science.1155398.

Qian, Z. Y., J. Ma, C. L. Sun, Z. G. Li, Q. M. Xian, et al. 2017. Using stable isotope labeling to study the nitrogen metabolism in Anabaena flos-aquae growth and anatoxin biosynthesis. Water Research 127:223-229. https://doi.org/10.1016/j.watres.2017.09.060.

Quirós, R., M. B. Boveri, C. A. Petracchi, A. M. Rennella, J. J. Rosso, et al. 2006. Los efectos de la agriculturización del humedal pampeano sobre la eutrofización de sus lagunas. Eutrofizaçãona América do Sul: Causas, conseqüências e tecnologias de gerenciamento e controle 1-16.

R Core team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

R Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Reynolds, C. S. 1997. Vegetation processes in the pelagic: a model for ecosystem theory. In O. Kinne (ed.). Excellence in Ecology nº 9. Ecology Institute Oldendorf, Germany.

Reynolds, C. S. 2006. The ecology of phytoplankton (Ecology, Biodiversity and Conservation). Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511542145.

Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur, and E. H. van Nes. 1997. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78:272-282. https://doi.org/10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2.

Schindler, D. W. 1977. Evolution of phosphorus limitation in lakes. Science 195(4275):260-262. https://doi.org/10.1126/science.195.4275.260.

Śliwińska-Wilczewska, S., J. Maculewicz, A. Barreiro Felpeto, and A. Latała. 2018. Allelopathic and bloom-forming picocyanobacteria in a changing world. Toxins 10:48. https://doi.org/10.3390/toxins10010048.

Unrein, F., I. O’Farrell, I. Izaguirre, R. Sinistro, M. dos Santos Afonso, and G. Tell. 2010. Phytoplankton response to pH rise in a N-limited floodplain lake: relevance of N 2-fixing heterocystous cyanobacteria. Aquatic Sciences 72(2):179-190. https://doi.org /10.1007/s00027-009-0115-1.

Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. (For the perfection of quantitative phytoplankton methodology). Mitteilungen. Communications. Internationale Vereinigungfür Theoretische und Angewandte Limnologie 9:1-38. https://doi.org/10.1080/05384680.1958.11904091.

Vega, B. O. Arredondo, B. Cordero Esquivel, and D. Voltolina. 2017. Determinación de peso seco y contenido orgánico e inorgánico. Métodos y herramientas analíticas en la evaluación de la biomasa microalgal. México: Conacyt.

Vrede, T., A. Ballantyne, C. Mille-Lindblom, G. Algesten, C. Gudasz, et al. 2009. Effects of N:P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshwater Biology 54(2):331-344. https://doi.org/10.1111/j.1365-2427.2008.02118.x.

Wood, S., M. Prentice, K. Smith, and D. Hamilton. 2010. Low dissolved inorganic nitrogen and increased heterocyte frequency: precursors to Anabaena planctonica blooms in a temperate, eutrophic reservoir, Journal of Plankton Research 32:1315-1325. https://doi.org/10.1093/plankt/fbq048.

Yang, J., H. Lv, L. Liu, X. Yu, and H. Chen. 2016. Decline in water level boosts cyanobacteria dominance in subtropical reservoirs. Science of the Total Environment 557:445-452. https://doi.org/10.1016/j.scitotenv.2016.03.094.

Zhao, C. S., N. F. Shao, S. T. Yang, H. Ren, Y. R. Ge, et al. 2019. Predicting cyanobacteria bloom occurrence in lakes and reservoirs before blooms occur. Science of the total environment 670:837-848. https://doi.org/10.1016/j.scitotenv.2019.03.161.

Floraciones tóxicas de cianobacterias en una laguna pampeana: Una aproximación a su ecología desde los rasgos morfofisiológicos

Descargas

Publicado

2021-10-02

Cómo citar

Cocciolo, F., Yema, L., Sánchez, M. L., González, C., & O’Farrell, I. (2021). Floraciones tóxicas de cianobacterias en una laguna pampeana: Una aproximación a su ecología desde los rasgos morfofisiológicos. Ecología Austral, 31(3), 505–519. https://doi.org/10.25260/EA.21.31.3.0.1514