Efectos de las características de la hojarasca sobre la diversidad alfa y beta de ensambles de invertebrados en una cuenca hidrográfica tropical

Autores/as

  • Renan De Souza Rezende Programa de Pós-Graduação em Ciências Ambientais, Universidade Comunitária Regional de Chapecó, Chapecó, Santa Catarina, Brasil.
  • Cristiane Biasi Programa de Pós-Graduação em Ecologia, Universidade Regional Integrada do Alto Uruguai e das Missões, Campus de Erechim, Erechim, RS, Brasil. http://orcid.org/0000-0002-0800-4298
  • Luiz U. Hepp Programa de Pós-Graduação em Ecologia, Universidade Regional Integrada do Alto Uruguai e das Missões, Campus de Erechim, Erechim, RS, Brasil.
  • Mauricio Mello Pretrucio Departamento de Ecologia e Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil.
  • José F. Gonçalves Júnior AquaRiparia/ Lab. de Limnologia. Departamento de Ecologia, Instituto de Biologia, Universidade de Brasília, Brasília, Distrito Federal, Brasil

DOI:

https://doi.org/10.25260/EA.19.29.3.0.750

Resumen

El presente estudio tuvo por objetivos a) investigar la importancia de los factores ambientales o espaciales en la comunidad de invertebrados, y b) examinar las diversidades alfa (α) y beta (β) de la comunidad de invertebrados asociada al proceso de descomposición de hojas, en tres escalas espaciales (segmento de arroyo, orden del arroyo y sub-cuenca). Se evaluaron variables abióticas y la colonización de la comunidad de invertebrados en dos tipos de detritos (Eucalyptus cloeziana e Inga laurina) en 14 sitios de muestreo. En ambos detritos, las comunidades fueron influenciadas por la matriz ambiental. La mayor diversidad α de invertebrados se relacionó con un aumento en la velocidad del flujo de agua (flujo de salida) y con los niveles de ortofosfato. Mayores aperturas de dosel y, en consecuencia, altas temperaturas mostraron efectos negativos sobre la diversidad α de invertebrados. La diversidad α en detritos de mayor calidad química (E. cloeziana) fue influenciada principalmente por el orden del arroyo, mientras que la diversidad beta resultó mayormente influenciada por la sub-cuenca. Sin embargo, en detritos de menor calidad (I. laurina), la diversidad α fue más influenciada por la sub-cuenca, mientras que la diversidad beta, por los sitios de muestreo. Estos hallazgos indicaron que cambios en la calidad de detrito proveniente de la vegetación ribereña resulta en una significativa modificación de la diversidad α y β de invertebrados.

https://doi.org/10.25260/EA.19.29.3.0.750

Citas

Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32-46. https://doi.org/10.1046/j.1442-9993.2001.01070.x. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x.

Anderson, M. J., T. O. Crist, J. M. Chase, M. Vellend, B. D. Inouye, A. L. Freestone, N. J. Sanders, H. V. Cornell, L. S. Comita, K. F. Davies, S. P. Harrison, N. J. Kraft, J. C. Stegen, and N. G. Swenson 2011. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecology Letters 14:19-28. https://doi.org/10.1111/j.1461-0248.2010.01552.x.

Anderson, M. J., K. E. Ellingsen, and B. H. McArdle 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters 9:683-693.

APHA (American Public Health Association). 1995. Standard methods for the examination of water and wastewater, 20th ed. APHA, Washington, D.C.

Bae, M.-J., Y. Kwon, S.-J. Hwang, T.-S. Chon, H.-J. Yang, I.-S. Kwak, J.-H. Park, S.-A. Ham, and Y.-S. Park. 2011. Relationships between three major stream assemblages and their environmental factors in multiple spatial scales. Annales de Limnologie - International Journal of Limnology 47:S91-S105. https://doi.org/10.1051/limn/2011022.

Bailey, R. C. 1992. Hierarchical analysis of community and habitat structure. Coenoses 7:127-135.

Bambi, P., R. S. Rezende, T. M. S. Cruz, J. E. A. Batista, F. G. G. Miranda, L. V. Santos, and J. F. Gonçalves Jr. 2016. Diversidade da Flora Fanerogâmica de três matas de galeria no bioma Cerrado. Heringeriana 10:147-167.

Baselga, A. 2012. The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21:1223-1232. https://doi.org/10.1111/j.1466-8238.2011.00756.x.

Bleich, M. E., M. T. F. Piedade, A. F. Mortati, and T. André. 2015. Autochthonous primary production in southern Amazon headwater streams: Novel indicators of altered environmental integrity. Ecological Indicators 53:154-161. https://doi.org/10.1016/j.ecolind.2015.01.040.

Borcard, D., and P. Legendre. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecological Modelling 153:51-68. https://doi.org/10.1016/S0304-3800(01)00501-4.

Bücker, A., M. Sondermann, H.-G. Frede, and L. Breuer 2010. The influence of land-use on macroinvertebrate communities in montane tropical streams - a case study from Ecuador. Fundamental and Applied Limnology / Archiv für Hydrobiologie 177:267-282. https://doi.org/10.1127/1863-9135/2010/0177-0267.

Clarke, A., R. Mac Nally, N. Bond, and P. S. Lake 2008. Macroinvertebrate diversity in headwater streams: a review. Freshwater Biology 53:1707-1721. https://doi.org/10.1111/j.1365-2427.2008.02041.x.

Costa, S. S., and A. S. Melo 2008. Beta diversity in stream macroinvertebrate assemblages: among-site and among-microhabitat components. Hydrobiologia 598:131-138. https://doi.org/10.1007/s10750-007-9145-7.

Cottenie, K. 2005. Integrating environmental and spatial processes in ecological community dynamics. Ecology Letters 8:1175-82. https://doi.org/10.1111/j.1461-0248.2005.00820.x.

De Nadaï-Monoury, E., F. Gilbert, and A. Lecerf. 2014. Forest canopy cover determines invertebrate diversity and ecosystem process rates in depositional zones of headwater streams. Freshwater Biology 59:1532-1545. https://doi.org/10.1111/fwb.12364.

Dominguez-Granda, L., K. Lock, and P. L. M. Goethals. 2011. Using multi-target clustering trees as a tool to predict biological water quality indices based on benthic macroinvertebrates and environmental parameters in the Chaguana watershed Ecuador. Ecological Informatics 6:303-308. https://doi.org/10.1016/j.ecoinf.2011.05.004.

Durães, L., F. O. Roque, T. Siqueira, A. M. Santos, M. A. Borges, and R. S. Rezende. 2016. Simulating the role of connectivity in shaping stream insect metacommunities under colonization cycle dynamics. Ecological Modelling 334:19-26. https://doi.org/10.1016/j.ecolmodel.2016.04.020.

Ferreira, V., A. C. Encalada, and M. A. S. Graça. 2012. Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science 31:945-962. https://doi.org/10.1899/11-062.1.

Ferreira, W. R., L. U. Hepp, R. Ligeiro, D. R. Macedo, R. M. Hughes, P. R. Kaufmann, and M. Callisto. 2017. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. Ecological Indicators 72:365-373. https://doi.org/10.1016/j.ecolind.2016.08.042.

Gardiner, E. P., A. B. Sutherland, R. J. Bixby, M. C. Scott, J. L. Meyer, G. S. Helfman, E. F. Benfield, C. M. Pringle, P. V. Bolstad, and D. N. Wear. 2009. Linking stream and landscape trajectories in the southern Appalachians. Environmental monitoring and assessment 156:17-36. https://doi.org/10.1007/s10661-008-0460-x.

Goering, H. K., and P. J. Van Soest. 1970. Forage fiber analysis (apparatus, reagents, procedures and some applications). Pp 1-2 in Agricultural handbook. US Department of Agriculture, Washington, D.C.

Golterman, H. L., R. S. Clymo, and D. M. A. M. Ohnsta. 1978. Methods for chemical analysis of freshwater. Blackwell Scientific Publications, Oxford.

Graça, M. A. S., C. Cressa, M. O. Gessner, M. J. Feio, K. A. Callies, and C. Barrios. 2001. Food quality, feeding preferences, survival and growth of shredders from temperate and tropical streams. Freshwater Biol 46:1-11. https://doi.org/10.1046/j.1365-2427.2001.00729.x.

Graça, M. A. S., F. Barlocher, and M. O. Gessner. 2005. Methods to Study Litter Decomposition: A Practical Guide. Springer, The Netherlands, Dordrecht. https://doi.org/10.1007/1-4020-3466-0.

Graça, M. A. S., V. Ferreira, C. Canhoto, A. C. Encalada, F. Guerrero-Bolaño, K. M. Wantzen, and L. Boyero. 2015. A conceptual model of litter breakdown in low order streams. International Review of Hydrobiology 100:1-12. https://doi.org/10.1002/iroh.201401757.

Hamada, N., J. L. Nessimian, and R. B. Querino 2014. Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia. INPA, Manaus.

Heino, J., M. Grönroos, J. Ilmonen, T. Karhu, M. Niva, and L. Paasivirta. 2013. Environmental heterogeneity and β diversity of stream macroinvertebrate communities at intermediate spatial scales. Freshwater Science 32:142-154. https://doi.org/10.1899/12-083.1.

Heino, J., A. S. Melo, and L. M. Bini. 2015a. Reconceptualising the beta diversity-environmental heterogeneity relationship in running water systems. Freshwater Biology 60:223-235. https://doi.org/10.1111/fwb.12502.

Heino, J., A. S. Melo, L. M. Bini, F. Altermatt, S. A. Al-Shami, D. G. Angeler, N. Bonada, C. Brand, M. Callisto, K. Cottenie, O. Dangles, D. Dudgeon, A. Encalada, E. Gothe, M. Gronroos, N. Hamada, D. Jacobsen, V. L. Landeiro, R. Ligeiro, R. T. Martins, M. L. Miserendino, C. S. Md Rawi, M. E. Rodrigues, F. de O. Roque, L. Sandin, D. Schmera, L. F. Sgarbi, J. P. Simaika, T. Siqueira, R. M. Thompson, and C. R. Townsend. 2015b. A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecology and evolution 5:1235-48. https://doi.org/10.1002/ece3.1439.

Hepp, L. U., R. Delanora, and A. Trevisan. 2009. Compostos secundários durante a decomposição foliar de espécies arbóreas em um riacho do sul do Brasil. Acta Botanica Brasilica 23:407-413. https://doi.org/10.1590/S0102-33062009000200012.

Hepp, L. U., V. L. Landeiro, and A. S. Melo. 2012. Experimental Assessment of the Effects of Environmental Factors and Longitudinal Position on Alpha and Beta Diversities of Aquatic Insects in a Neotropical Stream. International Review of Hydrobiology 97:157-167. https://doi.org/10.1002/iroh.201111405.

Hepp, L. U., and A. S. Melo. 2013. Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia 703:239-246. https://doi.org/10.1007/s10750-012-1367-7.

Hieber, M., and M. O. Gessner. 2002. Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026-1038. https://doi.org/10.1890/0012-9658(2002)083[1026:COSDFA]2.0.CO;2.

Hubbell, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton, Princeton University Press.

Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22:15-427. https://doi.org/10.1101/SQB.1957.022.01.039.

Koleff, P., K. J. Gaston, and J. J. Lennon. 2003. Measuring Beta Diversity for Presence-Absence Data. Journal of Animal Ecology 72:367-382. https://doi.org/10.1046/j.1365-2656.2003.00710.x.

Koroleff, F. 1976. Determination of nutrients. Pp. 117-181 in K. Grasshoff (ed.). Methods of Sea Water Analysis. Verlag Chemie Weinhein.

Lancaster, J., and A. G. Hildrew. 1993. Flow Refugia and the Microdistribution of Lotic Macroinvertebrates. Journal of the North American Benthological Society 12:385-393. https://doi.org/10.2307/1467619.

Legendre, P., D. Borcard, and P. R. Peres-Neto. 2005. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75:435-450. https://doi.org/10.1890/05-0549.

Legendre, P., and L. Legendre. 1998. Numerical Ecology. English Edition. Elsevier, London.

Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau, and A. González. 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7:601-613. https://doi.org/10.1111/j.1461-0248.2004.00608.x.

Lennon, J. J., P. Koleff, J. J. D. Greenwood, and K. J. Gaston. 2001. The geographical structure of British bird distributions: diversity, spatial turnover and scale. Journal of Animal Ecology 70:966-979. https://doi.org/10.1046/j.0021-8790.2001.00563.x.

Ligeiro, R., R. M. Hughesb, P. R. Kaufmannc, D. R. Macedo, K. R. Firmiano, Ferreira, D. Oliveira, A. S. Melo, and M. Callisto. 2013. Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators 25:45-57. https://doi.org/10.1016/j.ecolind.2012.09.004.

Luiza-Andrade, A., L. S. Brasil, N. L. Benone, Y. Shimano, A. P. J. Farias, L. F. Montag, S. Dolédec, and L. Juen. 2017. Influence of oil palm monoculture on the taxonomic and functional composition of aquatic insect communities in eastern Brazilian Amazonia. Ecological Indicators 82:478-483. https://doi.org/10.1016/j.ecolind.2017.07.006.

Magurran, A. E. 2001. Ecological diversity and its measurement. Chapman and Hall, London.

McCabe D. J., and N. J. Gotelli. 2000. Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecologia 124:270-279. https://doi.org/10.1007/s004420000369.

Md Rawi, C. S., S. A. Al-Shami, M. R. Madrus, and A. H. Ahmad. 2013. Local effects of forest fragmentation on diversity of aquatic insects in tropical forest streams: implications for biological conservation. Aquatic Ecology 47:75-85. https://doi.org/10.1007/s10452-012-9426-8.

Merritt, R. W., and K. W. Cummins. 1996. An introduction to the aquatic insects of North America. Kendall/Hunt Publishing Company, Dubuque.

Negishi, J. N., R. C. Sidle, S. Noguchi, A. R. Nik, and R. Stanforth. 2006. Ecological roles of roadside fern Dicranopteris curranii on logging road recovery in Peninsular Malaysia: Preliminary results. Forest Ecology and Management 224:176-186. https://doi.org/10.1016/j.foreco.2005.12.017.

Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. Henry, H. Stevens, and H. Wagner. 2013. Community Ecology Package: Ordination, Diversity and Dissimilarities. Version 2.0-8.

Oksanen, J., R. Kindt, P. Legendre, B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner. 2008. Adonis function. Pp. 15-0 in Vegan: Community Ecology Package. R package version 1.13-1.

Peres-Neto, P. R., P. Legendre, S. Dray, and D. Borcard. 2006. Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614-2625. https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2.

Rezende, R. S., M. A. S. Graça, A. M. Santos, A. O. Medeiros, P. F. Santos, Y. R. Nunes, and J. F. G. Junior. 2016. Organic Matter Dynamics in a Tropical Gallery Forest in a Grassland Landscape. Biotropica 48:301-310. https://doi.org/10.1111/btp.12308.

Rezende, R. S., M. M. Petrucio, and J. F. Jr. Gonçalves. 2014a. The Effects of Spatial Scale on Breakdown of Leaves in a Tropical Watershed. Plos One 9:e97072. https://doi.org/10.1371/journal.pone.0097072.

Rezende, R. S., A. M. Santos, C. Henke-Oliveira, and Jr J. F. Gonçalves 2014b. Effects of spatial and environmental factors on benthic a macroinvertebrate community. Zoologia Curitiba 31:426-434. https://doi.org/10.1590/S1984-46702014005000001.

Rueda-Delgado, G., K. M. Wantzen, and M. B. Tolosa. 2006. Leaf-Litter Decomposition in an Amazonian Floodplain Stream: Effects of Seasonal Hydrological Changes. Journal of the North American Benthological Society 25:233-249. https://doi.org/10.1899/0887-3593(2006)25[233:LDIAAF]2.0.CO;2.

Santos Fonseca, A. L., I. Bianchini, C. M. M. Pimenta, C. B. P. Soares, and N. Mangiavacchi. 2012. The flow velocity as driving force for decomposition of leaves and twigs. Hydrobiologia 703:59-67. https://doi.org/10.1007/s10750-012-1342-3.

Schneider, D. C. 2001. The rise of the concept of scale in ecology. BioScience 51:545-554. https://doi.org/10.1641/0006-3568(2001)051[0545:TROTCO]2.0.CO;2.

Siqueira, T., L. M. Bini, F. O. Roque, and K. Cottenie. 2012. A metacommunity framework for enhancing the effectiveness of biological monitoring strategies. Plos One 7:e43626. https://doi.org/10.1371/journal.pone.0043626.

Strickland, J. D. H., and T. R. Parsons. 1960. A manual of seawater analysis. Fisheries Research Board of Canada, Ottawa.

Tonin, A. M., L. U. Hepp, and J. F. Jr. Gonçalves. 2017. Spatial Variability of Plant Litter Decomposition in Stream Networks: from Litter Bags to Watersheds. Ecosystems 21:567-581. https://doi.org/10.1007/s10021-017-0169-1.

Uieda, V., and E. Carvalho. 2015. Experimental manipulation of leaf litter colonization by aquatic invertebrates in a third order tropical stream. Brazilian journal of biology 75:405-13. https://doi.org/10.1590/1519-6984.15013.

Whittaker, R. H. 1956. Vegetation of the Great Smoky Mountains. Ecological Monographs 26:1-80. https://doi.org/10.2307/1943577.

Whittaker, R. H. 1960. Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30:279-338. https://doi.org/10.2307/1948435. https://doi.org/10.2307/1943563.

Whittaker, R. H. 1972. Evolution and Measurement of Species Diversity. Taxon 21:213-251. https://doi.org/10.2307/1218190.

Wiens, J. A. 1989. Spatial Scaling in Ecology. Functional Ecology 3:385-397. https://doi.org/10.2307/2389612.

Yoshimura, C., K. Tockner, T. Omura, and O. Moog. 2006. Species diversity and functional assessment of macroinvertebrate communities in Austrian rivers. Limnology 7:63-74. https://doi.org/10.1007/s10201-006-0170-4.

Effects of leaf litter traits on alpha and beta diversities of invertebrate assemblages in a tropical watershed

Publicado

2019-11-18

Cómo citar

De Souza Rezende, R., Biasi, C., Hepp, L. U., Mello Pretrucio, M., & Gonçalves Júnior, J. F. (2019). Efectos de las características de la hojarasca sobre la diversidad alfa y beta de ensambles de invertebrados en una cuenca hidrográfica tropical. Ecología Austral, 29(3), 365–379. https://doi.org/10.25260/EA.19.29.3.0.750