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ABSTRACT. After one growing season of recovery, vegetation cover and height, species richness,
and life forms composition were surveyed in 15 sites located along a gas-pipeline track running
through an altitudinal range from 400-2000 m in the subtropical mountains of north-western
Argentina (23°S). Vegetation cover was negatively correlated with altitude but was generally
high at all sites (> 60%) after one year. Total species richness and maximum vegetation height
did not vary significantly with altitude. Cover of grasses, and cover and species richness of
trees, small shrubs and climbers were negatively correlated with altitude. Herb species richness
correlated positively with altitude. Large shrub richness and cover showed no statistical
relationship with altitude. The relative cover of herbs and grass species richness did not vary
along the altitudinal gradient. Overall, these results indicate that in the altitudinal range studied,
vegetation recovery is relatively high after this type of disturbance, probably due to low dispersal
limitations and to the availability of species well adapted to intense disturbances. Vegetation
recovery after gas-pipeline construction or similar perturbations may lead to relatively fast
ecological restoration in subtropical montane forest ecosystems.
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RESUMEN. Recuperación de la vegetación sobre la traza de un gasoducto en un gradiente
altitudinal de las Yungas argentinas: La cobertura, altura de la vegetación y riqueza de especies
total y para  diferentes formas de vida después de una estación de crecimiento fueron censados
en 15 sitios ubicados sobre la traza de un gasoducto en un gradiente altitudinal entre 400-2000
m en las montañas del noroeste argentino (23°S). La cobertura de la vegetación disminuyó con
la altitud, aunque fue alta en todos los sitios (> 60%). La riqueza total de especies y la altura
máxima de la vegetación no variaron significativamente con la altitud. La cobertura de pastos y
la cobertura y riqueza de especies de árboles, pequeños arbustos y lianas disminuyeron con la
altitud, mientras que la riqueza de hierbas aumentó. Tanto la riqueza y cobertura de arbustos,
como la cobertura de hierbas y la riqueza de pastos no mostraron variaciones. Si bien la cobertura
o riqueza de la mayoría de las formas de vida disminuyeron con la altitud, los resultados de este
estudio sugieren que en el gradiente altitudinal estudiado la recuperación de la vegetación es
relativamente rápida en todo el gradiente luego de perturbaciones humanas de este tipo,
probablemente por la baja limitación a la dispersión y por la disponibilidad de especies adaptadas
a perturbaciones intensas. La recuperación de la vegetación luego de la construcción de
gasoductos o perturbaciones similares puede permitir restauraciones ecológicas relativamente
rápidas en bosques subtropicales de montaña.

[Palabras clave: disturbios, impacto ambiental, formas de vida, revegetación, selvas subtropicales
de montaña]
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INTRODUCTION

Understanding and quantifying revegeta-
tion after human disturbances are important
goals for basic research and ecological resto-
ration purposes. Vegetation recovery affects
important ecosystem properties such as soil
erosion and fertility, and habitat quality
(Borman & Likens 1979; Vitousek & White
1981; Peet 1992). Plant succession after human
disturbances has been studied in Neotropi-
cal mountains in relation to traditional large-
scale land uses such as grazing and agricul-
ture. In those conditions, the main factors lim-
iting early succession are dispersal limitation,
competition with pre-existing grasses, and
recurrent fires (Aide & Cavelier 1994;
Sarmiento 1997; Holl et al. 2000; Wijdeven &
Kuzee 2000; Zimmerman et al. 2000). While
in several tropical mountains demographic
and socio-economic factors are currently lead-
ing towards a reduction in grazing and agri-
culture, linear human disturbances such as
roads and pipelines are increasingly wide-
spread (Young 1994; Messerli & Ives 1997).
Environmental impact assessment of these
types of disturbances is becoming a common
component of middle or large-scale develop-
ment projects (Barrow 1997). However, im-
pact assessments often lack basic information
on dynamic processes such as vegetation re-
covery, which are needed to estimate ecosys-
tem resilience and long-term ecological im-
pacts.

In mountain ecosystems, roads or pipelines
typically cover hundreds to thousands of me-
ters of altitudinal range. Altitudinal gradients
are recognized as a major control of vegeta-
tion structure in montane ecosystems. The
changes in vegetation along elevational gra-
dients are the consequence of the interaction
among different factors, including different
climatic effects on plant ecophysiology
(Woodward 1987) and different disturbance
regimes affecting vegetation (Harmon et al.
1984; Veblen et al. 1992). Given that reveg-
etation rates depend on environmental con-
ditions controlling establishment and growth,
and on availability of propagules (Pickett et
al. 1987), and that both factors vary with alti-
tude, changes in vegetation recovery are also
expected.

Studies on vegetation recovery after pipe-
line-related disturbances have been restricted
to temperate and boreal ecosystems where the
factors controlling revegetation (e.g., soil, cli-
mate, flora) are significantly different than
those in Neotropical environments (Artz 1989;
Zink et al. 1995; Paschke et al. 2000). We took
advantage of a gas pipeline finished in 1999
in a Neotropical ecosystem of north-western
Argentina to address two research objectives.
The first was to quantify vegetation cover,
height and species richness after one year of
recovery. These variables are important for
ecological restoration purposes since they in-
fluence soil erosion, habitat quality, and spe-
cies diversity maintenance. We hypothesized
that vegetation recovery of these variables
decreases with altitude since vegetation
growth is expected to decrease with de-
creased temperature along the altitudinal gra-
dient. The second objective was to assess
changes in cover and species richness of the
different life forms. Different life forms are
expected to respond differentially to the alti-
tudinal gradient since they are associated
with different resource-use strategies (Smith
et al. 1997).

Study area

The study was conducted along the Nor-
Andino gas-pipeline, which extends from
Pichanal (Argentina) to Mejillones (Chile).
The pipeline crosses approximately 60 km of
montane forests located in the eastern slope
of the Santa Victoria mountain range
(23°14’S;64°40’W to 23°11’S;64°89’W, Figure
1). This area is part of the southern Yungas
or Selva tucumano-boliviana, the southern-
most extension of the tropical Andean mon-
tane forests (Cabrera & Willink 1980). The
Nor-Andino gas pipeline is located in the core
area of the upper Bermejo basin, considered
the area of highest conservation priority of
the Argentinean Yungas (Grau & Brown 2000;
Brown et al. 2001). Climate is subtropical with
a monsoonal rainfall regime (wet summers,
dry winters). Mean annual temperature for
the study area ranges from 14-21o C (Minetti
1999). Rainfall varies between 1000-2200 mm/
year and peaks at intermediate altitudes, ap-
proximately 1000 m (Bianchi 1981).
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Plant species composition, diversity and
physiognomy change along the altitudinal
range (400-2500 m). Three main forest types
can be differentiated: (1) premontane lowland
forests (400-700 m) dominated by Astronium
urundeuva (Allemão) Engl., Phyllostylon
rhamnoides (Poisson) Taubert, Parapiptadenia
excelsa (Griseb.) Burkart, Anadenanthera
colubrina (Vell.) Brenan, and Calycophylum
mutiflorum Griseb.; (2) lower montane forests
(700-1500 m) dominated by Blepharocalyx
salicifolius (Kunth) O. Berg, Cinnamomum
porphyrium (Griseb.) Kosterm., Ocotea puberula
(Rich.) Nees, Ficus maroma Castellanos, and
different species of Myrtaceae; and (3) upper
temperate montane forests (1500-2500 m) with
Cedrela lilloi C. DC., Juglans australis Griseb.,
Podocarpus parlatorei Pilg., and Alnus acuminata
Kunth as the main tree species (Grau & Brown
2000).

At lower elevations (below 1200-1500 m)
forests are semi-evergreen with 25-35 tree spe-
cies per hectare (Grau & Brown 1995a). Close-
canopy forests cover landscape, and climb-
ers show the highest abundance and richness
at this altitudinal level (A Malizia, pers. obs.).
In the upper portion of the gradient, the
vegetation is a mosaic of grasslands,
shrublands and open-canopy forests. At the
local scale (e.g., 1000 m2 transects), tree spe-
cies richness decreases linearly with elevation
(Morales 1997), whereas at the scale of 1 ha
plots tree species richness shows relatively
minor changes with elevation (Grau & Brown
1995a). In this region, no study has quanti-
fied altitudinal trends of climbers, grasses,
shrubs and herbs.

The disturbance regime is dominated by
treefall gaps, landslides and floods in the ri-

Figure 1. (A) Relative location of the study area, (B) satellite image of the study transect, and
(C) altitudinal profile showing the relative horizontal and vertical location of the sampling sites along
the transect.
Figura 1. (A) Ubicación relativa del área de estudio, (B) imagen satelital de la transecta de estudio, y
(C) ubicación relativa horizontal y vertical de los sitios a lo largo de la transecta.



parian areas at lower elevations, and by land-
slides and fire towards the upper elevations
(HR Grau, in press). Several tree species re-
generate in conditions of intense disturbances
such as landslides (Grau & Brown 1995b).

The construction of the pipeline started in
July 1998 and took approximately 16 months.
To lay the pipeline, a 7-15 m wide road was
opened, and all vegetation and topsoil were
removed. The 56-cm diameter pipeline was
buried at an average of 1.5 m of depth. Be-
tween September and October 1999, the road
was abandoned progressively from lower to
higher altitudes. Given that the road was
abandoned at the end of the dry season when
there is virtually no regeneration, we ana-
lyzed data assuming a simultaneous aban-
donment.

METHODS

Fifteen sampling sites were surveyed on the
pipeline track along the studied altitudinal
gradient (Figure 1). These sites were selected
before the road was abandoned according to
their accessibility to evaluate vegetation re-
covery. Data on vegetation recovery was col-
lected in December 2000, one growing sea-
son after total vegetation removal.

At each sampling site, elevation and loca-
tion were recorded using a Geographic Posi-
tioning System, and five transects were set
perpendicular to the pipeline track. The first
one was set on the pipeline track at least 20 m
away from the access road, and transects were
at least 10 m apart from each other. Each tran-
sect covered the total open belt (7-15 m).
Along each transect, a vertical measuring stick
was set every meter and a 5-cm radius was
established around it. Thus, 10-cm diameter
circular plots were established every meter
along transects. In each plot, every plant in-
side the circle was identified to species and
the life form type was recorded. Species were
identified in the field or material was col-
lected and identified using the literature
(Cabrera 1978, 1983; Legname 1982; Gentry
1993; Jankowski et al. 2000) and reference
collections from the Miguel Lillo Herbarium
(Universidad Nacional de Tucumán, Argen-
tina). Species nomenclature follows Zuloaga

& Morrone (1999a, 1999b). Life forms were
classified into six categories: herbs, grasses,
climbers (herbaceous vines and woody li-
anas), trees, small shrubs, and large shrubs.
Small shrubs were defined as plants with a
woody base and herbaceous offshoots, while
large shrubs have woody stems throughout.
For practical purposes, the height of each in-
dividual was assigned to one of seven classes:
1.0-10.0 cm, 10.1-20.0 cm, 20.1-40.0 cm, 40.1-
60.0 cm, 60.1-100.0 cm, 100.1-200.0 cm, and
200.1-400.0 cm.

In order to estimate maximum vegetation
height, we only considered the 10 tallest in-
dividuals per site. As plant height was as-
signed to classes, we used the mean value of
its height class (e.g., if the individual was in
the 200.1-400.0 cm class, we used 300 cm as
its height). Finally, we computed the average
of the 10 tallest values obtained by this pro-
cedure. Total percentage of cover and per-
centage of cover of each life form was com-
puted as the number of circular plots with at
least one individual taller than 1 cm divided
by the total number of plots per site. Species
richness is expected to change with the area
of analysis. To estimate species richness in a
comparative way among sites including
transects of different length, we used the
number of species included in the first seven
plots of each transect, which was the number
of plots of the shortest transect of our study.
Thus, total species richness and species rich-
ness per life form correspond to the number
of species found in an area of 350 cm2 per site
(70 cm2 per transect, five transects per site).
To assess the representativeness of this
sample size as an index of species richness
per site we used the rarefaction solution (Go-
telli & Entsminger 2001). The method uses a
specified number of individuals (which cor-
responds to the minimum abundance of in-
dividuals across all sites), to randomly select
individuals from the complete set of data of
each site, and generates new samples for
which species richness is calculated. The pro-
cess is repeated many times (1000 iterations)
computing the mean and variance of species
richness. In 9 of 15 sites, our estimated spe-
cies richness index where included in the 95%
confidence intervals of the rarefied species
richness values, 5 were one or two species out
of the intervals, and one was 4 species devi-
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ated. Moreover, the slope of the relationship
between these rarefied species richness val-
ues and the altitudinal gradient was identi-
cal to the one reported in our results. There-
fore we assumed that the sample size that we
selected as an index of species richness is ac-
curate. For comparative purposes and to
avoid confusion in the interpretation of the
results of different life forms, we used the
same sample size for species richness of each
life form and total species richness, although
we did not apply rarefaction to species rich-
ness per life form because in many cases (e.g.,
climbers, trees, and small and large shrubs)
the minimum abundance value was equal to
1. Finally, absolute frequency of species per
site was reported.

Given that many variables did not meet the
requirements of parametric Correlation Ana-
lysis (normality and homoscedasticity), Ken-
dall’s Non-Parametric Correlation Analysis
was used to assess the statistical significance
of the variable-altitude relationships. The
Slope Coefficient (b) of a Linear Regression
Analysis is also presented for descriptive
purposes. Descriptions of the statistical meth-
ods can be found in Sokal & Rohlf (1995).

RESULTS

We recorded a total of 116 species along the
altitudinal gradient: 53 herbs, 21 trees, 17 large
shrubs, 11 grasses, 10 climbers, and 4 small
shrubs.

Maximum vegetation height and percent
vegetation cover had a negative relationship
with altitude. Maximum vegetation height
decreased at a rate of about 70 cm in 1600 m,
but the correlation was not statistically sig-
nificant due to a relatively high inter-site vari-
ability (Figure 2A). At all sites vegetation
cover after one growing season was greater
than 60%, and decreased approximately 30%
from 400 to 2000 m (Figure 2B). There was no
statistical relationship between species rich-
ness and altitude (Figure 2C).

Cover and richness of tree saplings, small
shrubs and climbers showed a decreasing
trend, although the trend for climber richness
was only marginally significant (Figure 3A,

3B and 3D). Grass cover showed a steep de-
crease with altitude, reaching the highest val-
ues (approximately 60%) at low altitudes (Fi-
gure 3F). There was no relationship between
grass species richness and altitude (Figure 3F),
and herbs were the only life form that had an
increase in richness with altitude (Figure 3E).
There was no relationship between altitude
and herb cover (Figure 3E), large shrub cover,
and large shrub richness (Figure 3C).

Among the grasses, Cynodon dactylon was
very frequent at lower altitude sites while
Paspalum dilatatum was very frequent along
the entire gradient. Asteraceae was the most
diverse herb family recorded. Most species of
Asteraceae were very frequent at upper
portions of the gradient, with the exception of
Conyza bonariensis, which was more frequent
at lower altitudes. Other herb species such as
Commelina diffusa (Commelinanceae) were also
frequent towards higher sites, while Kyllinga
vagianata (Cyperaceae) was common the entire
gradient throughout. The most abundant small
shrub was Solanum chaetophorum (Solanaceae),
which showed high frequencies at lower alti-
tude sites. Tree, climber and large shrub species
showed no clear frequency patterns along the
gradient.

The proportion of cover by herbs and large
shrubs increased with elevation, while the
other four life forms tended to decrease (Fi-
gure 4).

DISCUSSION

Even though vegetation recovery was very
high in all sites (> 60% cover), there was a
significant negative relationship with altitude
as we hypothesized. These are high values in
comparison with vegetation recovery after
similar disturbances in temperate ecosystems
(Artz 1989; Zink et al. 1995; Paschke et al.
2000). In addition, these cover values are the
result of colonization by a diverse set of life
forms, implying a faster recovery of functio-
nal diversity. This pattern of rapid recovery
can be attributed to the short distance to seed
sources due to the linear morphology of the
pipeline track. Although seed arrival is often
a major limitation for forest recovery in Neo-
tropical mountains (e.g., Aide & Cavelier
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1994; Myster & Sarmiento 1998), the relatively
short distance to potential seed sources along
the gas-pipeline track seems to allow early
seed arrival without significant limitations.
Given the high inter-site variation, recovery
of vegetation height and richness did not
show a clear relationship with the altitudinal
gradient.

Differences in recovery of the different life
forms were generally consistent with the ecol-
ogy of those life forms along the altitudinal
gradient, in which two groups of responses
can be identified both for recovery of species
richness and vegetation cover. In the case of
species richness, life forms that dominate the
landscape towards the lower portion of the
gradient (trees and climbers), as well as small
shrubs, showed a decreasing trend with ele-
vation, as expected from the change from for-
est to open woodlands. Herbaceous plants
consistently increased with altitude. Recov-
ery of vegetation cover showed a similar pat-
tern with the only difference that herb cover
was relatively constant along the gradient and
grass cover showed a decreasing trend with
altitude, contrary to what one should expect
from the vegetation gradient, in which grasses
are the dominant life form towards the up-
per portion of the gradient. These results sug-
gest that, while in the lower portion of the
gradient grasses behave as pioneer plants that
will be progressively displaced by the domi-
nant life forms (primarily trees), in the upper
portion of the gradient grasses could be con-
sidered late successional species that will re-
place herbs through time.

Two main conclusions emerge. First, veg-
etation recovery of plant cover is consistent
with observed worldwide vegetation patterns
along altitudinal gradients (Woodward 1987).
Since temperature decreases with altitude,
growth rates and regeneration are lower. Such
a pattern is clearer for life forms typical of
less extreme environments: trees and climb-
ers. Second, despite the intense local distur-
bance produced by the pipeline construction,
post-disturbance recovery is rapid. Vegeta-
tion ground cover, a main control of soil ero-
sion, exceeds 60% at all elevations after only
one growing season. This can be largely re-
lated to the fact that, although the disturbance
was intense, the disturbed area is narrow, and
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Figure 2. (A) Maximum vegetation height, (B)
vegetation cover, and (C) total species richness
(species/350 cm2) along the altitudinal gradient
after one year of regeneration. Results of Non-
Parametric Kendall’s Correlation Analysis are
presented together with the slope parameter (b)
of a Linear Regression.
Figura 2. (A) Altura máxima de la vegetación, (B)
cobertura de la vegetación, y (C) riqueza total de
especies (especies/350 cm 2) a lo largo del
gradiente altitudinal después de una estación de
crecimiento. Se presentan los valores del Análisis
de Correlación no Paramétrica de Kendall junto a
los valores de la pendiente (b) de una Regresión
Lineal.
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Figure 3. Species richness (species/350 cm2) and vegetation cover of tree saplings (A), small shrubs (B),
large shrubs (C), climbers (D), herbs (E), and grasses (F) along the altitudinal gradient after one year of
regeneration. Results of Non-Parametric Kendall’s Correlation Analysis are presented together with
the slope parameter (b) of a Linear Regression.
Figura 3. Riqueza de especies (especies/350 cm2) y cobertura de la vegetación correspondiente a árboles
(A), arbustos pequeños (B), arbustos grandes (C), lianas (D), hierbas (E) y pastos (F) a lo largo del
gradiente altitudinal después de una estación de crecimiento. Se presentan los valores del Análisis de
Correlación no Paramétrica de Kendall junto a los valores de la pendiente (b) de una Regresión Lineal.
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consequently seed dispersal is not a major limi-
tation for recovery. In abandoned pastures the
two main factors limiting vegetation restora-
tion are availability of propagules and competi-
tion with preexisting grasses (Guevara et al.
1986; Aide & Cavelier 1994; Zimmerman et al.
2000). The rapid regeneration in our study was
mainly due to the absence of these factors. In
our study, seed input was not limited due to
the proximity to seed sources, and competition
with preexisting vegetation did not occur since
the disturbance removed all vegetation. In ad-
dition, the disturbance regime is intense in
these ecosystems, where landslides are com-
mon components of forest dynamics (Grau &
Brown 1995a; HR Grau, in press). Landslides
may be promoting the availability of distur-
bance-adapted species, making patterns of di-
versity recovery consistent with models of
small disturbances (Miller 1982) or distur-
bance-adapted vegetation (Denslow 1985). The
only exception to this pattern seems to be gras-
ses, which behaved as pioneer/early coloni-

zers at lower elevations, and lagged behind
herbs at higher elevations, where herbs domi-
nated the undisturbed landscape.

Overall, the rapid vegetation recovery ap-
pears to be driven by efficient dispersal, lack
of competition with pre-existing vegetation,
low compaction of the soil and capacity of lo-
cal plant communities to colonize severely dis-
turbed sites. This suggests that intense linear
disturbances, such as pipeline or similar cons-
tructions (e.g., short lasting, low traffic roads
with low soil compaction), could be managed
and restored with native vegetation in a relative
short time period. The first year after the distur-
bance seems to play a significant role in coloni-
zation and potentially on successional path-
ways making management decisions during
this period particularly relevant. At higher
elevations, revegetation is slower and restora-
tion may need more aid, for example by plan-
ting life forms that are important components
of the landscape, such as grasses.

Figure 4. Relative cover of the six life forms along the altitudinal gradient.
Figura 4. Cobertura relativa de las seis formas de vida a lo largo del gradiente altitudinal.
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Life form Sampling site
Species Family 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Climbers

 Mandevilla sp. Lindl. Apocynaceae 3 1

 Mikania micrantha Kunth Asteraceae 1

 Mikania sp. Willd. Asteraceae 3 1

 Bignoniaceae l Bignoniaceae 1 1

 Ipomoea sp. L. Convolvulaceae 3

 Cucurbitella sp. Walp. Cucurbitaceae 1

 Caiophora lateritia (Hook.) Klotzsch Loasaceae 1

 Sida jussieana DC. Malvaceae 1

 Passiflora sp. L. Passifloraceae 1

 Cissus tweediana (Baker) Griseb. Vitaceae 1

Grasses

 Cynodon dactylon (L.) Pers. Poaceae 15 25 3 15 4 21 2 3 1 7

 Cynodon hirsutus Stent Poaceae 1 1

 Cynodon sp. Rich. Poaceae 2 3

 Digitaria sanguinalis (L.) Scop. Poaceae 2

 Eleusine indica (L.) Gaertner Poaceae 1

 Oplismenus hirtellus (L.) P. Beauv. Poaceae 1 4 1

 Panicum maximun Jacq. Poaceae 3 4

 Panicum sp. L. Poaceae 6

 Paspalum dilatatum Poir. Poaceae 2 9 7 9 20 4 2 8 2 2 14

 Paspalum sp. L. Poaceae 3 3

 Setaria geniculata P. Beauv. Poaceae 2

Herbs

 Dicliptera tweediana Nees Acanthaceae 1

 Alternanthera pungens Kunth Amaranthaceae 1

 Amaranthus quitensis Kunth Amaranthaceae 1

 Gomphrena sp. L. Amaranthaceae 1 3 1

 Hydrocotyle sp. L. Apiaceae 3 1 13 1 1

 Acmella oppositifolia (Lam.) R. K.
Cansen

Asteraceae 1 1

 Ageratum conyzoides L. Asteraceae 1 11 7 16 2 3

 Bidens sp. L. Asteraceae 2

 Conyza bonariensis (L.) Cronquist Asteraceae 4 2 3 5 10 1 4

 Eclipsa prostrata (L.) L. Asteraceae 1  

Appendix. Absolute frequency of occurrence for species recorded along the altitudinal gradient, listed
by life form, per sampling site. Each site consisted of 35 plots (five 7-m transects). 1: 478 m, 2: 478 m,
3: 546 m, 4: 565 m, 5: 590 m, 6: 610 m, 7: 765 m, 8: 863 m, 9: 863 m, 10: 998 m, 11: 1130 m, 12: 1148 m,
13: 1182 m, 14: 1500 m, and 15: 1985 m.
Apéndice. Frecuencia absoluta de la presencia en los sitios de muestreo de las especies identificadas a lo
largo del gradiente altitudinal, listadas por forma de vida. Cada sitio incluyó 35 parcelas (cinco transectas
de 7 m). 1: 478 m, 2: 478 m, 3: 546 m, 4: 565 m, 5: 590 m, 6: 610 m, 7: 765 m, 8: 863 m, 9: 863 m, 10: 998 m,
11: 1130 m, 12: 1148 m, 13: 1182 m, 14: 1500 m, and 15: 1985 m.
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Life form Sampling site
Species Family 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Elephantopus mollis Kunth Asteraceae 1 3 1 1

 Eupatorium hecatanthum (DC.) Baker Asteraceae 1

 Galinsoga caracasana (DC.) Sch. Bip. Asteraceae 7 5 16 8

 Gamochaeta sp. Wedd. Asteraceae 1

 Gamochaeta coarctata (Willd.)
Kerguélen

Asteraceae 1 2 7 2

 Parthenium hysterophorus L. Asteraceae 8

 Siegesbeckia jorullensis Kunth Asteraceae 5 4

 Tapetes minuta L. Asteraceae 1 1

 Vernonia pinguis Grises. Asteraceae 1 2 9 1 2 4

 Heliotropium procumbens Mill. Boraginaceae 8 6 9 2 1

 Cerastium rivulariastrum Moeschl &
Pedersen

Caryophyllaceae 1 1

 Drymaria cordata (L.) Willd. ex Roem.
& Schult

Caryophyllaceae 1 2 1 1

 Paronychia communis Cambess. Caryophyllaceae 1 2

 Chenopodium ambrosioides L. Chenopodiaceae 1 1

 Commelina difusa Burm. f. Commelinaceae 3 3 2 5 2 7 2

 Tinantia erecta (Jacq.) Schltdl. Commelinaceae 1 1 1 1

 Dichondra sericea Sw. Convolvulaceae 1 3 2 6

 Cyperus friburgensis Boeck. Cyperaceae 1

 Cyperus sp. 1 L. Cyperaceae 1 1 2 2

 Cyperus sp. 2 L. Cyperaceae 1

 Cyperus surinamensis Rottb. Cyperaceae 1 1

 Kyllinga vaginata Lam. Cyperaceae 7 1 3 6 4 2 1 1 1 3

 Euphorbia hirta L. Euphorbiaceae 1 2 1

 Phyllanthus niruri L. Euphorbiaceae 2

 Lotodes repens (L.) Kuntze Fabaceae 1 1

 Indeterminada 1 Indet. 1 2

 Indeterminada 2 Indet. 1

 Indeterminada 3 Indet. 1

 Indeterminada 4 Indet. 1

 Leonorus sibiricus L. Lamiaceae 2

 Stachys gilliesii Benth. Lamiaceae 4

 Sida rhombifolia L. Malvaceae 1

 Sida rodrigoi Monteiro Malvaceae 5 6  

 Oxalis sp. Oxalidaceae 2 7 1 2  

 Plantago australis Lam. Plantaginaceae 3 2 1

 Polygonum meisnerianum Cham. &
Schltdl.

Polygonaceae 1 1 3 

 Talinum fruticosum (L.) Juss. Portulacaceae 1  

Appendix. Continued.
Apéndice. Continuación.
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Appendix. Continued.
Apéndice. Continuación.

Life form Sampling site
Species Family 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Pteris deflexa Link Pteridaceae 1 1 1

 Stemodia verticillata (Mill.) Hassl. Scrophulariaceae 1 1

 Veronica persica Poir. ex Lam. Scrophulariaceae 1

 Solanum microdontum Bitter Solanaceae 1

 Urtica chamaedryoides Pursh f. Urticaceae 2

 Verbena sp. L. Verbenaceae 1 1

Large shrubs

 Baccharis latifolia (Ruiz & Pav.) Pers. Asteraceae 4

 Baccharis sp. 1 L. Asteraceae 3

 Baccharis sp. 2 L. Asteraceae 1 1

 Senecio rudbeckiifolius Meyen & Walp Asteraceae 18

 Stevia sp. Cav. Asteraceae 1

 Heliotropium transalpinum Vell. Boraginaceae 1 1 1

 Croton saltensis Griseb. Euphorbiaceae 2

 Mimosa polycarpa Kunth Fabaceae 1

 Boehmeria sp. Jacq. Urticaceae 4

 Lepechinia vesiculosa (Benth.) Epling Lamiaceae 5

 Salvia personata Epling Lamiaceae 27

 Abutilon grandifolium (Willd.) Sweet Malvaceae 2

 Malvastrum coromandelianum (L.)
Garcke

Malvaceae 4

 Ludwigia bonariensis (Micheli) Hara Onagraceae 5

 Cestrum sp. L. Solanaceae 1

 Solanum abutiloides (Griseb.) Bitter &
Lillo

Solanaceae 2

 Solanum sp. L. Solanaceae 1 1 3 3 2 7 3 1

Small shrubs

 Pluchea sagittalis (Lam.) Cabrera Asteraceae 2

 Verbesina suncho (Griseb.) S. F. Blake Asteraceae 5 5 3 1 1

 Solanum chaetophorum C. V. Morton Solanaceae 7 9 1 3 2 16

 Solanum lorentzii Bitter Solanaceae 1

Trees

 Tecoma stans (L.) Juss. ex Kunth Bignoniaceae 1 3

 Sambucus nigra L. Caprifoliaceae 2 1

 Trema micrantha (L.) Blume Celtidaceae 5

 Cnidoscolus vitifolius (Mill.) Pohl Euphorbiaceae 2 3

 Croton piluriferum Rusby Euphorbiaceae 1

 Acacia aroma Gillies ex Hook. & Arn. Fabaceae 1 1

 Anadenanthera colubrina (Vell.) Brenan Fabaceae 1 1 4  
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Appendix. Continued.
Apéndice. Continuación.
Life form Sampling site
Species Family 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 Enterolobium contortisiliquum (Vell.)
Moroni

Fabaceae 1

 Inga semialata (Vell.) Mart Fabaceae 1

 Parapiptadenia excelsa (Griseb.) Burkart Fabaceae 1 1

 Cassiaria sylvestris Sw. Flacourtiaceae 1

 Miconia molybdea Naudin Melastomataceae 1

 Cedrela angustifolia Mociño & Sessé ex
DC.

Meliaceae 1 3

 Myrtacea 1 Myrtaceae 1 1

 Bocconia integrifolia Humb. & Bonpl. Papaveraceae 3 2

 Cyphomandra betacea (Cav.) Sendtn. Solanaceae 1 2

 Solanum riparium Pers. Solanaceae 1 1 1 4 1 1 1

 Vassobia breviflora (Sendtn.) Hunz. Solanaceae 2 1

 Phyllostilon rhamnoides (J. Poiss.) Taub. Ulmaceae 1

 Urera baccifera (L.) Gaudich. Urticaceae 1

 Urera caracasana (Jacq.) Gaudich ex
Griseb.

Urticaceae 1 1  


