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Abstract. The influence of disease incidence, clumping of infected plants, and size of the sampling
unit on the sensitivity of the ordinary runs test was simulated in order to identify the optimum
sampling profile for investigating the spatial pattern of plant diseases. A simulation programme
was written to generate plant populations with random and clustered spatial patterns displayed in
quadrats of 50 by 200 plants. 600 and 1200 independent populations were generated for random
and clustered patterns, respectively. 12 levels of disease incidence were simulated within the range
0.01-0.95. For every population, the simulation performed a sampling procedure with 9 sizes of the
sampling unit (20, 30, 40, 50, 60, 80, 100, 120 and 150 plants). In each case the simulation was
based on 1000 samples of continuous series of plants. In order to evaluate the sensitivity of ordinary
runs test to the degree of aggregation, plant populations were simulated with two additional values
of clumping power, for two levels of disease incidence. When a random pattern was simulated, the
probability of rejecting the null hypothesis was almost unaffected by the size of the sampling unit
and slightly decreased with disease incidence. When clustered patterns were generated, the probability
of error clearly decreased both with disease incidence and size of the sampling unit. The probability
of error was also affected by the degree of aggregation. As expected, the higher the clumping power
the higher the probability of rejecting the null hypothesis. The implications of the sensitivity of the
runs test on the design of sampling schemes are discussed.

Introduction

Taylor (1984) stated that “spatial distribution is one of the most characteristic ecological properties
of species”. A simple but important principle in biological sciences is that organisms are not equal in
number at all locations and that organisms are not equally associated with others of the same population
at all locations (Madden 1988). Epidemics of plant disease vary both in time and space (Campbell et
al. 1984, Madden et al. 1987a, 1987b and 1988). It is widely accepted by plant pathologists and
epidemiologists that the spatial component of plant disease epidemics is as important as the temporal
component (Madden et al. 1987b).

Pathogen movement can result in heterogeneous distribution of the disease within the affected
crop (Madden 1988, Reynolds et al. 1988, Reynolds and Madden 1988, Campbell and Madden 1990,
Madden et al. 1990a). As Campbell and Madden (1990) states, “spatial pattern in plant pathology
can be defined as the arrangement of disease entities relative to each other”. Spatial patterns may be
classified into three categories, namely 1) uniform, 2) random, and 3) clustered or clumped (Madden
and Campbell 1986, Southwood 1978). In a uniform pattern there is a regular arrangement of infected
and healthy plants. “Random” means that all distinguishable arrangements of infected and healthy
plants are equally possible, or, in other words, that in every point in the crop there is the same
probability of a plant being infected. In a clustered pattern, every plant in the field does not have an
equal probability of being infected so that a diseased plant increases the probability of nearby plants
being infected (Campbell and Madden 1990).
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Information on the spatial pattern of pathogens and plant diseases can be useful in various ways. The
identification of disease patterns in the field can be used to develop an efficient sampling plan. Generally,
greater aggregation requires larger sample sizes. The analysis of spatial patterns enables a better
understanding of the dynamics of virus disease epidemics and determination of the mechanics of disease
spread (Madden and Campbell 1986). For example, a random pattern of infected plants would suggest
that the pathogen does not spread within the stand, i.e. no secondary transmissions occur. This observation
would draw the attention of researchers to certain types of analytical models to describe the dynamics of
disease epidemics (van der Werf et al. 1988, van der Werf and Riesbos 1990). Although most plant disease
epidemic models assume a random pattern of disease, the need for incorporating aggregation into the
appropriate equations has been pointed out by Madden (1988). Considering that studies of spatial pattern
are relevant for disease epidemics, researchers should know the statistical properties of the tests they use
to make spatial characterizations.

A frequently used method to evaluate the spatial distribution is the ordered sequence of plants (Madden
and Campbell 1986). This type of tests was used to study the relationship between epidemic characteristics
and spatial distributions, like the interaction between initial aggregation and initial disease level. Although
ordered sequence techniques usually have a straight-forward interpretation, some disadvantages were
identified. Madden et al. (1982) evaluated ordinary runs, original doublets, and corrected doublets for
detecting the spatial pattern of plant virus diseases through simulation of random and clustered patterns.
They found that the ordinary runs test was the most satisfactory in terms of misclassification chance. No
clear relationship was found between frequency of rejection of the null hypothesis of randomness and
disease incidence. However, both in their field and simulation data, the sampling unit always consisted of
100 plants. The question remains whether sampling size can affect the robustness of the ordinary runs test.
In the field, various biological processes, like differential dispersal rates or secondary transmissions, could
certainly give rise to different degrees of aggregation or “ clumping powers” . Madden et al. (1982) simulated
clustered spatial patterns by assigning a single conditional probablity of a plant becoming infected on the
infectious status of the immediately preceding one (p=0.75). This means that only one clumping power
was simulated. We do not know whether this is a representative figure, neither do we know if such
clumping power affects the outcome of the test. If there were plant diseases with different aggregation
trends, ordinary runs test might have differential sensitivity to them. In this paper we explore the influence
of incidence, clumping power of infected plants, and size of the sampling unit on the sensitivity of the
ordinary runs test in order to determine the consistency of the test under different circumstances.

Ordinary runs test
As an example, consider the following pattern of 10 symbols representing a crop row with diseased

(+) and disease-free (-) plants: + - - - + + - - + +. There are five runs in this example. Reading left to right,
the runs are ‘+’ , ‘- - -’ , + +’, ‘- -’ and ‘ + +’. Given a random sequence of diseased (+) and healthy (-)
plants, the expected number of runs (E(U)), can be calculated as

2m (N - m)
E(U) = 1 +

N

where m: number of diseased plants, N: total number of plants in the sample, and U: number of runs.
The standard deviation of U is given by

The observed number of runs will be less than E(U) if there is clustering of diseased plants and this can be
tested using a standard normal deviate calculated as
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U - E(U)
Z =

s(U)

A value of Z < -1.64 indicates clustering (P < 0.05) (Campbell and Madden 1990).

Materials and Methods

Simulation study
A simulation program was written to generate plant populations with random and clustered spatial

patterns displayed in a grid of 50 X 200 plants. For standard-grown corn crops, the area of simulated
populations represents aproximately 0.18 hectares (near 1000 m2). The source code list (QuickBasic
4.5) is available upon request to DEG.

Random pattern was simulated by setting the same probability of each plant in the grid becoming
diseased, independent of any other plant in the population. In this case, the simulation algorithm
started by the random selection of a coordinate pair (x, y) and asked whether a diseased plant should
exist at that location. The algorithm used the simple rule of comparing a random number (RN, range
0-1) with 0.5; if RN < 0.5, then a diseased plant would occur at (x, y); otherwise, it would not. The
procedure was repeated until the proportion of diseased plants in the simulated field reached the
selected incidence value for the simulation (see below).

The representation of a clumped pattern of diseased plants through simulation is a more
complicated process as it can be achieved in different ways. Basically, it depends on the distribution,
shape, size and number of patches of diseased plants and the distribution and density of diseased
plants within each patch. The simulation of aggregated patterns used the most parsimonious set of
assumptions, where patches of diseased plants were located at random (according to a uniform
probabilistic distribution) within the 50 X 200 simulated ‘arena’ , patch size (square shape) varied
randomly (uniform distribution) between 25 (=5 X 5) and 225 (=15 X 15) plants and diseased plants
were located within the patch according to a ‘clumping power rule’  and the particular incidence
value simulated. The clumping of diseased plants within the patch was determined by the probability
(p) of a plant being diseased if the previously simulated plant was infected. If p were 0.5 the
arrangement of diseased plants within the patch would be strictly random, so ‘clumping powers’  of
0.6, 0.75 and 0.9 were selected for the study. The algorithm first randomly selected the location of a
diseased plant patch and its size; afterwards, using the same procedure as in the random pattern
procedure, it selected the location of diseased plants within the patch comparing a random number
with the clumping power (p), so that if RN <p, a diseased plant would occur. The procedure was
iterated until the proportion of diseased plants in the simulated population reached the selected
incidence value.

The simulation scheme defined four types of diseased plant populations: one type with infected
plants arranged according to a strictly random pattern and three types with infected plants arranged
according to a clustered pattern, with clumping powers of 0.6, 0.75 and 0.9. Within each type, 12
disease incidence levels (within the range 0.01 - 0.95) were simulated. Each incidence was in turn
replicated 50 times. Thus, the simulation study comprised 2400 (50 X 12 X 4) populations. Whithin
each population replicate, the simulation performed a sampling procedure with 9 sampling unit sizes
(20, 30, 40, 50, 60, 80, 100, 120 and 150 plants). For each size class the program took 1000
independent (with reposition) samples. Each sample consisted of a continuous series of plants along
a row. The row and first plant of the series were selected at random. When the location of the first
plant did not allow taking a complete sample (i.e. was placed near a border) a new location was
assigned.

Once the whole set of simulations had been run and all the samples had been taken, the program
calculated the frequency of cases (out of 1000 samples) in which the null hypothesis of randomness
was rejected (significance level a=0.01). The average frequency (over the 50 replicates) of rejections
of the null hypothesis was calculated for each combination of the simulated variables:
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Figure 1. Probability of correct identification of the spatial pattern by the ordinary runs test in relation
to the size of the sampling unit (number of plants per sample), when the sampled population has a
random arrangement. Probabilities were estimated as the relative frequency of not rejecting the null
hypothesis of randomness. Lines 1 to 4 represent disease incidence levels y=0.9, y=0.5, y=0.2, and
y=0.01, respectively.

Figure 2. Probability of incorrect identification of the spatial pattern by the ordinary runs test in relation
to the size of the sampling unit (number of plants per sample), when the sampled population has an
aggregated arrangement (p=0.75). Probabilities were estimated as the relative frequency of not rejecting
the null hypothesis of randomness. Lines represent the simulation outcomes for different sampling unit
sizes and disease incidences. Lines 1 to 6 represent incidence levels (y)= 0.05, 0.2, 0.3, 0.5, 0.7 and 0.9.
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spatial pattern (two levels), disease incidence (12 levels), ‘clumping power’  (three levels) and sampling
unit size (nine levels). The null hypothesis (H

0
) of the runs test states that a number of observed runs is not

significantly lower than the expected number of runs obtained from a randomly distributed population,
and the alternative hypothesis (H

1
) states that the observed number of runs is significantly lower than the

expected number of runs obtained from a randomly distributed population. Under this simulation study,
H

0
 will be true when a random pattern of diseased plants is simulated, whereas H

1
 will be true when a

clumped distribution is simulated. As in every hypothesis test, there are two possible wrong decisions
when H

0
 is evaluated: to reject H

0
 when H

0
 is true (Type 1 error, with probability α; in the present case

estimated as the proportion of H
0
 rejections out of 50 replicates when a simulated random pattern is

analyzed), and not to reject H
0
 when it is false (Type 2 error, with probability β; in the present case,

estimated as the proportion of not rejection of H
0
, out of 50 replicates, when a simulated clumped pattern

is analyzed). It is worth noting that 1-β represents the power of the test.

Results

Random simulated pattern data. The probability of Type 2 error (no rejection of the null hypothesis of
random pattern) was not affected by the size of the sampling unit, except for a small influence for levels of
disease incidence of 0.2 or lower, and slightly increased with disease incidence (Fig. 1). The highest and
lowest probabilities of rejecting the null hypothesis when a random pattern was simulated were 0.095 and
0.003 (9.5% and 0.3%), respectively.

Clustered simulated pattern data. The probability of Type 2 error decreased both with disease incidence
and size of the sampling unit (Fig. 2). The probability of Type 2 error was also affected by the clumping
power. As expected, the higher the clumping power, the lower the probability of not rejecting the null
hypothesis (Fig. 3).

Discussion

Our results on simulations of random spatial patterns are similar to those obtained by Madden et al.
(1982). However, there were important divergences among these studies when the results of the runs test
were compared with simulated clustered patterns. Indeed, while the frequency of misclassifications estimated
by Madden et al. (1982) was 5 %, our estimations ranged between 0 % and 80 %, depending on disease
incidence, ‘clumping power’ , and sample size. The procedure followed by Madden and coworkers to
generate clustered patterns automatically produces a distribution of disease incidences from 30% to 70%.
Then we constrained the comparison to those levels of disease incidence and length of the sampling unit
actually shared by both studies. Fig. 3 shows that in our simulation study the probability of Type 2 error
obtained for incidences from 0.3 to 0.7 and a sampling unit of 100 plants, ranged from aproximately 0%
to near 13%, similar to the result obtained by Madden et al. (1982).

Field data on the spatial pattern of Rio Cuarto Corn Disease in Argentina were obtained using the
ordinary runs test (Trumper et al. 1996). During the 1990-91, 1992-93 and 1993-94 growing seasons, the
null hypothesis of randomness was rejected in 10%, 30% and 0% of the samples, respectively, yielding a
general rejection frequency of 11 %. During the 1990-91 season, rejection of the null hypothesis occurred
along a wide range of incidence values. When data sets from the last two seasons were pooled, neither
incidence nor the length of sampling unit affected the results of the runs test significantly, but the samples
identified as clumped corresponded to long sampling units.

According to the findings of Madden et al. (1982), if Río Cuarto Corn Disease were randomly
distributed, no samples should be misclassified as clumped, but in the field work by Trumper and
coworkers (1996) the null hypothesis was rejected in 11 % of the cases. In contrast, if the disease had
a clumped spatial pattern, the spatial pattern would be missclasified as random in no more than 5 % of
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Figure 3. Effect of the clumping power (p) and incidence (y) on the probability of not rejecting the null
hypothesis of randomness (runs test). Probabilities were estimated from the simulation study (see text
for full explanation). Lines a and b correspond to incidence levels y=0.3 and y=0.7, respectively. Lines
l, 2 and 3 correspond to clumping powers p=0.6 p=0.75 and p=0.9, respectively.

Figure 4. Combination of disease incidence and length of the sampling unit delimiting sectors of different
α and β probabilities. Four isoclines of probability of error below 0.05 were calculated from the simulation
data, one of them under the assumption of random spatial pattern of diseased plants and the other three
under the assumptions of 3 different clumping powers (p=0.6, 0.75 and 0.9). Sectors I through III
represent α and β > 0.05, α < 0.05 and β > 0.05, and α < 0.05, β < 0.05, respectively.
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the cases, while in the field work this frequency was 89%. Field results on the spatial pattern of Río
Cuarto Corn Disease show much more agreement with the hypothesis of randomness.

The frequencies of random cases in the field data (89%; Trumper et al. 1996) were very close to
those obtained in our simulation of random patterns (90-99.9%) and clearly higher than those obtained
in the simulation of clustered patterns (0-80%). The first observation indicates that the spatial pattern
of Río Cuarto Corn Disease falls just within the limits of randomness. The second one, strongly
suggests that the disease has a random spatial pattern.

The results of this simulation experiment should be considered cautiosly because of restrictions
imposed by the simulation algorithm used (especially on the representation of the aggregation pattern,
as other rules are possible giving similar spatial arrangements). However, the different pieces of
evidence pointing into the same direction reinforce the conclusions to make them reliable.

Implications for sampling schemes
The simulation of random spatial distribution of diseased plants showed that, when disease

incidence is low, there is no point in increasing the size of the sampling unit because this has almost
no influence on the outcome of the runs test. For very low levels of disease incidence, sampling units
of more than 40 plants seem a sensible choice. If the disease had a clustered spatial pattern, then it
becomes crucially important to select the size of the sampling units according to the expected disease
incidence. For very low disease incidence (0.05 to 0.1), increasing the length of the sampling unit
does not increase the reliability of the test accordingly. In this case it seems convenient to distribute
the time budget available for sampling many small units rather than a few large ones. When disease
incidence is high, the slope of the relation between the probability of error and the size of sampling
unit (Fig. 3) is steeper at short sampling units. Thus, significant reductions in the probability of error
could be gained with small increases in the length of the sampling unit. However, the longer the
sampling unit, the lower the slope of the curves will be. So it seems appropriate not to break the time
budget into too small sampling units because they have a high probability of error associated. Neither
should the units be too long as only very slight improvements would be achieved. The ideal size of
the sampling unit lies somewhere in between.

Obviously, if there is interest in studying the spatial pattern of a plant disease using the ordinary
runs test, whether this pattern is random or clustered is unknown before making any sampling. So,
how can the researcher decide on the best sampling scheme? It is frequently recommended that every
sampling program of any living organism or remains of its activity, should be based on knowledge
about the mean and the variance of the population under study. These parameters can only be estimated
by preliminary sampling (Southwood 1978). In the case of plant diseases, the preliminary sampling
would provide the researcher with an estimation of disease incidence, which would help in selecting
the most convenient size of the sampling unit. Obviously, it would not be wise to rely on this preliminary
sampling to decide whether the disease has a random or clustered pattern and select the best sampling
unit accordingly. When the spatial pattern is random, disease incidence has only a very slight impact
on the performance of the runs test. On the contrary, for clustered patterns, the outcome of the runs
test is crucially dependent on disease incidence. Consequently, it seems appropriate to decide upon
the size of the sampling unit assuming the spatial pattern is clustered and having preliminary estimates
of disease incidence.

We have already mentioned that the probability of Type 2 error depends on incidence and size of
the sampling units and that for a given disease incidence, increasing sample size reduces the probability
of Type 2 error. From a more general viewpoint, reliability of the test can be delimited identifying the
conditions under which α and β fall below 0.05.

Figure 4 is a phase diagram of disease incidence and size of the sampling units delimiting three
sectors given by different probabilities of type I and type II errors (α and β, respectively). In sector
I, the probabilities of type errors I and II (α and β) are greater than 0.05. In sector II, α is <0.05, but
β is > 0.05. Only in sector III are α and β < 0.05. Thus, if the researcher is interested in investigating
the spatial pattern of a plant disease using ordinary runs test, sampling units should be selected as to
fall within sector III.

Although the simulation study presented here provides a better understanding of the sensitivity
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of ordinary runs test, another source of uncertainty remains which seems much more difficult to tackle.
We showed that the probability of error is strongly affected by the clumping power of the infected plants.
The lower the aggregation force, the less reliable the test is rendered. Unfortunately, preliminary sampling
would not assist in estimating this clumping power, which could only be determined through either specific
experimental studies or direct estimation in the field, of the conditional probability of a diseased plant
being adjacent to another diseased one.

Figure 4 summarizes the conclusions of this paper: The higher the disease incidence the smaller the
sample size required for β < 0.05 and the higher the disease incidence the smaller the impact of the
clumping power of the infected plants. The recommendation that derives from these statements is to
select sampling units long enough to fall within sector 111.
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