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A�������. The increasing connectivity and urbanization of human population favor the reemergence and 
spread of dengue fever in subtropical and temperate regions, which poses onerous challenges to health 
systems. Analyzing the contribution of socioenvironmental conditions to the contagion risk is essential to 
design preventive strategies. In this retrospective analysis, we aim to assess the effects of social, demographic 
and environmental factors on the likelihood of becoming infected with dengue virus in Tucumán, the main 
subtropical city of Argentina. We implemented a case-control study to analyze the 2016 dengue outbreak. 
The control group included all persons reported with nonspecific febrile syndrome, and the cases were those 
confirmed with dengue virus after laboratory analyses. We recorded the age, sex and diagnostic date for every 
patient, and we georeferenced their house. This georeferentiation allowed us to estimate the distance to the 
nearest previous positive case (to control autocorrelation), population density, proportion of households with 
insufficient material constructive quality, overcrowding, educational level, NDVI, surface temperature and 
distance to nearest canal and cemetery. We constructed and compared logistic regression models to identify 
the combination of variables that best predicted dengue cases. Proximity to previous cases, cemeteries and 
canals, scarcity of surrounding vegetation, age and educational deficit were associated with an increased 
probability of being positive for dengue. In Argentina, socioeconomic differences are reflected in environmental 
inequalities, which reinforce the differential odds of suffering from dengue fever. Our results suggest that 
improving urban environmental quality may constitute an efficient way of preventing individual contagion 
of dengue and subsequent outbreaks.

[Keywords: neglected tropical diseases, epidemiology, public health, risk factors, socioecology, spatial 
distribution]

R������. Las condiciones socioeconómicas y ambientales influyen en el riesgo de infección por dengue en 
una ciudad subtropical de la Argentina. La creciente conectividad y urbanización de la población humana 
favorece que el dengue resurja y se expanda en las regiones subtropicales y templadas, lo que plantea desafíos 
a los sistemas de salud. Analizar la contribución de las condiciones socioambientales al riesgo de contagio es 
fundamental para diseñar estrategias preventivas. En este análisis retrospectivo pretendemos evaluar el efecto 
de factores sociales, demográficos y ambientales sobre la probabilidad de infectarse con el virus del dengue 
en Tucumán, la principal ciudad subtropical de Argentina. Realizamos un estudio de caso control durante el 
brote de dengue de 2016. El grupo control correspondió a todas las personas reportadas como síndrome febril 
inespecífico, y los casos fueron los confirmados por el virus del dengue a través de análisis de laboratorio. 
Registramos la edad, el sexo y la fecha de diagnóstico de cada paciente, y georreferenciamos su domicilio. Esta 
georreferenciación nos permitió estimar la distancia al caso positivo anterior más próximo (para controlar la 
autocorrelación), la densidad poblacional, la proporción de viviendas con calidad del material insuficiente, el 
hacinamiento, el nivel educativo, el NDVI, la temperatura superficial y la distancia a canales y cementerios. 
Construimos modelos de regresión logística para identificar la combinación de variables que mejor predecían 
los casos de dengue. La proximidad a casos anteriores, a cementerios y canales, la escasez de vegetación 
circundante, la edad y el déficit educativo se asociaron a un aumento en la probabilidad de ser positivos para 
dengue. En la Argentina, las diferencias socioeconómicas se reflejan en las desigualdades ambientales, que 
refuerzan las probabilidades diferenciales de padecer dengue. Nuestros resultados sugieren que mejorar la 
calidad ambiental urbana puede constituir una forma eficiente de prevenir el contagio individual de dengue 
y los consiguientes brotes.

[Palabras clave: enfermedades tropicales, epidemiología, salud pública, factores de riesgo, socioecología, 
distribución espacial]
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I�����������
Dengue is a raising health problem at 

the global level that requires integrated 
socioecological consideration, since three 
components are involved: the pathogenic 
virus (DENV), the vector (mosquitoes: Aedes 
aegypti and A. albopictus) and human hosts. 
Each component responds to extrinsic factors 
(e.g., ecological, climatic) and intrinsic factors 
(e.g., physiological, behavioral) that constitute 
a complex matrix of combinations which 
varies in time and space, and differentially 
affects the occurrence of dengue and the risk 
of infection (Mordecai et al. 2017; Lippi et al. 
2018; Ryan et al. 2019). Population growth, 
concentration in urban areas through 
unplanned expansion, a higher use of non-
degradable products (e.g., bottles, plastic, 
cans, tires) and the unprecedented increase 
of the movement of people through trips and 
commerce are the main characteristics of our 
time (Spiegel et al. 2005). Since dengue is an 
eminently urban disease, it will likely be one 
of the main problems of the Anthropocene, 
and health systems should adequately handle 
socioecological conditions to prevent and 
reduce its impact (Barrera et al. 2000; Santos 
et al. 2019). dengue presence and control has 
been the focus of public health systems for 
decades in tropical developing countries, 
because their urban sprawl frequently takes 
place in scenarios of social inequity, fragile 
economies, social and political changes, 
and weakening of health systems (Stewart-
Ibarra et al. 2014; Marcondes et al. 2017), but 
currently dengue is spreading around the 
world affecting subtropical and temperate 
regions, such as Argentina (Stanaway et al. 
2016; López et al. 2018).

In Argentina, a progressive increase in cases 
has been reported since dengue reemergence 
in 1986 (Das et al. 1999). The spatial 
distribution and frequency of these cases is 
not homogeneous through the country and the 
northern region of the country (Jujuy, Salta, 
Misiones and Tucumán provinces) is the 
most affected area. Official reports identify 
three dengue outbreaks: 2009, 2016 and 2020 
with 26923, 41207 and 56095 cases, respectively 
(argentina.gob.ar/salud/epidemiologia). Most 
studies of dengue in Argentina have addressed 
the activity of the vector, its occurrence (Vezzani 
et al. 2008; Mangudo et al. 2018), reproduction 
(Estallo et al. 2013) and the biophysical factors 
influencing its development (Batallán et al. 
2015). The use of geospatial tools allowed 

the detection of areas with higher occurrence 
and increased spread likelihood of the vector 
(Carbajo et al. 2004; Estallo et al. 2013; Estallo et 
al. 2014). However, studies on the occurrence 
of the disease and its relationship with social 
and environmental factors inherent in urban 
population are scarce. Considering the 
rising incidence of dengue in Argentina, it 
is important to understand the influence of 
socioecological conditions on the occurrence 
and spread of dengue in the population to 
inform health policies and reduce its incidence 
on vulnerable population. 

Most studies on dengue risk focus on the 
density of dengue cases within specific 
areas, disregarding the inaccuracies that 
may arise from imperfect case recording. In 
underdeveloped areas of the world, many 
cases of dengue fever are poorly recorded and 
georeferenced (Das et al. 2017). For example, 
urbanized areas with poor socioeconomic 
conditions are frequently more difficult to 
georeference because they have no regular 
addresses, thus there can be an underestimation 
of the incidence of the epidemic in these 
areas. Additionally, certain groups may be 
underregistered due to the economic costs 
of medical care (Stewart-Ibarra et al. 2014). 
This situation is problematic because the 
biases of georeference are propagated to the 
results and their interpretation. To avoid 
biases associate to georeference issues we 
considered an alternative approach based on 
a case-control design, in which only correctly 
georeferenced events of nonspecific febrile 
syndrome were considered to assess the 
likelihood of presenting dengue in association 
with socioenvironmental conditions. This 
study uses an integrated, context-dependent 
approach to evaluate the association between 
sociodemographic and ecoepidemiological 
variables that characterize a community 
with the risk of dengue infection in an urban 
area in northern Argentina. For that, we 1) 
describe the spatial location of suspected 
and confirmed dengue cases during the 2016 
outbreak; 2) quantify different socioeconomic, 
demographic and ecological indicators for 
every suspicious case, and 3) analyze the 
association between the output (confirmed 
or discarded) with the nearest previous 
case (to control spatial autocorrelation) and 
socioenvironmental conditions to assess the 
probability that a patient with nonspecific 
febrile syndrome is positive for dengue. We 
hypothesize that contagion risk depends on 
the presence of the virus, the availability of 
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reproducing sites for mosquitoes, inadequate 
handling of water services and spare 
urbanization. Thus, we predict negative 
associations of dengue risk with the distance 
to previous cases, which function as source 
of the virus; with socioeconomic variables, 
indicating poor infrastructure and inadequate 
handling of open environments, and positive 
associations with vegetation and water bodies, 
which favor the proliferation of mosquitoes.

M�������� ��� M������

Study area
The northern region of Argentina is the 

most tropical area of the country, with the 
highest rates of dengue incidence since 
its reintroduction, and thus higher risk of 
becoming endemic. Tucumán province has 
an area of 22524 km2 inhabited by 1448188 
people (INDEC 2010), the highest population 
density among all provinces (64.3 inhabitants/
km2), with a nonhomogeneous distribution 
(more than 90% concentrated in less than 
25% of its area). Although dengue affects 
the overall province of Tucumán, we focus 
on Gran San Miguel de Tucumán (GSMT), 
the main urban agglomeration of northern 
Argentina, to understand the spatiotemporal 
dynamic with a high resolution and adequate 
spatial information for this study. GSMT is a 
subtropical city that extends in the foothills 
of Sierras del Aconquija, between 400 and 
600 m a. s. l. It is located in the transition 
between two contrasting ecoregions: montane 
area, located to the west and dominated by 
rainforests (Yungas), and dry woodlands 
(Chaco) in lower elevations. The weather is 
sharply seasonal; summers are warm (mean: 
25 °C) and winters are mild (mean 14° C). 
Eighty percent of the precipitations (1000 mm 
annually) are concentrated between October 
and April (warm months). GSMT is located in 
the center of Tucumán province and comprises 
San Miguel de Tucumán and other neighboring 
settlements, which constitute a functional unit. 
The population presents high inequalities in 
levels of education, age structure, household 
characteristics, and urban sprawl has occurred 
between two extremes: wealthy enclosed 
urbanizations and popular districts. Based 
on the information of the 1991, 2001 and 2010 
population censuses, the spatial distribution 
reflects a process of increasing polarization 
and unsolved housing problems (Batista 
Zamora and Natera Rivas 2017).

Information sources
We used data from patients who reported 

a nonspecific febrile syndrome compatible 
with dengue fever. All our sample population 
presented febrile syndrome. From that 
population, we compared febrile patients 
who did not present the event (negative 
for dengue) with those who did present 
the event (positive for dengue). We used a 
case-control study, in which the cases were 
dengue positive patients confirmed by the 
laboratory and the controls were dengue 
negative patients, a similar criterion used in 
other spatial dengue studies (Parra et al. 2018). 
We evaluated whether exposure to any factor 
that is understood to be causal or strongly 
associated with the event is unequally present 
between dengue positive (cases) and negative 
(controls). Our research was very limited to 
the precise data we had. For most patients, 
we did not have information on people who 
resided in the same house and did not contract 
dengue. Neither do we have information on 
the population that lived in the same area 
and did not get dengue. These approach was 
useful to reduce biased representation of 
positive cases (e.g., underrepresentation due 
to inaccurate georeferentiation or due to the 
uneven accessibility to public health systems). 
We respected data confidentiality according to 
the National Law N° 25326 of personal data 
protection. In this ecological study, we used 
data from secondary sources of the pathologies, 
and public nonbinding knowledge. Thus, 
informed consent was not necessary. The 
project is approved by the ethical and 
methodological committee of the Tucumán 
Health Ministry. We worked with nonspecific 
febrile syndrome patients from Gran San 
Miguel de Tucumán, registered by the Health 
Ministry at División Virología, Departamento 
Bioquímico, Laboratorio de Salud Pública of 
Tucumán during the 2016 outbreak. It is the 
provincial reference diagnostic center and 
gathers all the information on suspected 
dengue patients. Relevant information of 
the patient was recorded, such as sex, age, 
date of symptom onset and address, and 
we used Python Client library for Google 
Geocoding API to convert the postal address 
of each record into a geographic coordinate. 
Of the total number of records (n=1531), it 
was possible to georeference 52.84% (n=809), 
and the rest were excluded from the analysis. 
This loss of information was not spatially 
homogeneous, but certain zones of the study 
area were underrepresented. This uneven 
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loss of information generates biased results 
on epidemiological assessments (Das et 
al. 2017; Stewart-Ibarra et al. 2014) that are 
overcome in our study by considering only 
correctly georeferenced patients in case and 
control groups. We used the location of the 
records to obtain the values of all the social-
environmental variables. 

We combined the location of every case 
with the date of symptom onset to calculate 
the minimum distance of each record to 
preexisting positive cases of dengue. Positive 
cases indicate the presence of the virus, and 
minimum distance to preexistent positive 
cases constitutes an indicator of distance to 
virus sources, which has been considered a 
predictor of dengue fever (Martínez-Vega et al. 
2015). Furthermore, the inclusion of distances 
to previous cases allows controlling spatial 
autocorrelation in the response, which is 
characteristic of epidemiological patterns. To 
calculate such a distance, we built a distance 
matrix among all patients using Geosphere 
package in R. For every case, we identified 
the shortest distance to a positive case whose 
date of symptom onset occurred before the 
date of symptom onset of the focal case. 

To characterize the socioeconomic condition 
of each record we used information of 
Argentinean census (Censo Nacional de 
Población, Hogares y Vivienda 2010) elaborated 
by Instituto Nacional de Estadísticas y Censos 
(INDEC) to extract relevant socioeconomic 
variables (Table 1). We worked at the censal 
radius level (the minimum spatial unit of censal 
information aggregation, which includes ~300 
households); GSMT includes 760 censal radii. 
Every suspicious and confirmed case was 
assigned to a censal radius on the basis of 
its georeferentiation; from each censal radius 
we extracted five socioeconomic variables (see 
Table 1): a) population density; b) proportion 
of households with insufficient constructive 
quality; c) proportion of households with 
unsatisfied basic needs; d) overcrowding, 
and e) proportion of households in which the 
maximum level of education reached is basic 
school cycle.

To assign the values of the ecological 
variables to each record, we used different 
data sources (Table 1). To estimate the 
vegetation surrounding the household of 
each record, we used a map of the normalized 
difference vegetation index (NDVI), an 
indicator of photosynthetic activity and, 
in urban environments, of the proportion 

of vegetation cover. NDVI is estimated by 
remote sensing, thus it can be spatialized in 
natural and urban environments (Paolini et 
al. 2019). To estimate local temperature, we 
used soil surface temperature (SST), calculated 
from remote sensing (Li et al. 2013); although 
SST does not have a perfect correlation with 
air temperature, it is considered the best way 
to map spatial variations in temperature. To 
calculate these two variables, we used Landsat 
images (30 m resolution) from the summer 
season, and we calculated the median of 
each variable in a 250-m radius around each 
record. Additionally, from a map of canals and 
cemeteries of GSMT and its surroundings we 
calculated the distance of each record to these 
possible vector sources.

Data analyses

We performed a preliminary analysis to assess 
the difference in each explaining variable 
between patients who were positive (cases) 
and negative (control) for the dengue virus. 
To analyze the association between personal 
attributes of the patient (sex and age), social 
and environmental conditions, and distance 
to virus sources, we carried out logistic 
regressions with the result of the laboratory 
analysis (positive or negative). Univariate 
logistic regressions allow  estimating the 
probability of a given response as a function 
of each explanatory variable individually 
(Gelman 2012). The response variable can only 
attain binomial values (0 and 1), which cannot 
be addressed through traditional statistics, so 
GLM were built using a binomial distribution 
of errors and a logit transformation to ensure 
the linear combination of predictors and 
estimates are restrained to the response range 
(Aiello Lammens 2008). 

We also evaluated the joint effect of different 
variables on the probability of observing 
dengue cases through multivariate logistic 
regressions (Supplementary Material-Table 
S1).To evaluate the association between 
the group of explanatory variables and the 
likelihood that a patient with nonspecific 
febrile syndrome is diagnosed with dengue, 
we compared different multiple logistic 
regressions with the stepwise backward 
method, starting from a saturated model and 
eliminating the variables that less contributed, 
one at a time, which allowed us discarding 
redundant variables. Since most of the 
explaining variables (sex was the exception) 
were continuous, we did not include 
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interactions in the models. The analysis of 
statistical interactions requires huge amounts 
of records to avoid instability of the parameters 
and the interactions between two continuous 
variables are seldom informative. The models 
were ranked using the Akaike information 
criterion (Burnham et al. 2011). We calculated 
the AIC and the differences in AIC between 
models (AIC) and selected the one with the 
smallest values (Supplementary Material-
Table S2). All analyses were performed using 
R, specifying a logistic modeling distribution 
in a generalized linear model (GLM).

R������
Spatial distribution of dengue

From the 1531 original records of patients 
with nonspecific febrile syndrome, we were 
able to correctly georeference 809 of them in 
Gran San Miguel de Tucumán (Figure 1). Of 
these, 20.89% (n=169) were positive for dengue. 
Half of the censal radii of GSMT (n=380) had 
patients with nonspecific febrile syndrome. Of 
this total, 56.27% of the censal raddi had one 
patient and the other censal radii had between 
two and 27 patients. There were 109 censal 

Name Indicator Descriptive metrics References
mean SD min max n

Socioeconomic variables (censal radius scale)
   Population density N° individuals/

m2
0.008 0.004 0 0.033 760 Sobral de Almeida et al. 

(2009); Díaz-Quijano and 
Waldman (2012);

   Unsatisfied basic needs Proportion of 
household with 
unsatisfied basic 
needs

0.107 0.097 0 0.55 760 Braga et al. (2010); Ryan et 
al. (2019)

   Household quality Proportion of 
households 
with insufficient 
constructive 
material quality

0.15 0.16 0 0.8 760 Toan et al. (2015); Lippi et 
al. (2018)

   Overcrowding Proportion of 
households with 
more than three 
people per room

0.044 0.044 0 0.214 760 Brunkard et al. (2007); 
Lippi et al. (2018)

   Primary education proportion 
of surveyed 
individuals 
who undertook 
primary studies

0.405 0.187 0.066 1 760 Siqueira-Junior et al. (2008); 
Moraes et al. (2013)

Demographic variables (individual scale)
   Age (years) Age 31.83 16.84 0 92 779 Soghaier et al. (2014); 

Stewart-Ibarra et al. (2014);
   Sex Sex 0.5 391 Brunkard et al. (2007); 

Steward-Ibarra et al. (2014)392

Ecological variables (household scale)
   NDVI Mean NDVI in a 

250-m buffer
0.16 0.06 0.042 0.415 781 Qi et al. (2015); Huang et 

al. (2018)
   Soil surface temperature (SST) Mean SST in a 

250-m buffer
34.09 0.879 30.81 34.46 781 Vieira Araujo et al. (2015); 

Martínez-Bello et al. (2017)
   Distance to canals (m) Distance to the 

closest canal
1180.5 777.25 0 3472.2 781 Nakhapakorn and Tripathi 

(2005); Sánchez-Hernández 
et al. (2021)

   Distance to cemeteries (m) Distance to the 
closest cemetery

2337 1131 120 6069 781 Shafie (2011); Estallo et al. 
(2013)

   Minimum distance (m) Distance to 
the closest 
confirmed 
preexistent case

883.6 1096.37 0 7093 781

Table 1. Descriptive metrics of the predictor variables of patients with nonspecific febrile syndrome. NDVI: normalized 
difference vegetation index.
Tabla 1. Medidas descriptivas de las variables predictoras de los pacientes con síndrome febril inespecífico. NDVI: 
índice de vegetación de diferencia normalizada.
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radii with positive cases, ranging from 1 (n=81) 
to 15 cases per censal radius (n=1).

Risk factors for the presence of positive cases of 
dengue

The distance between a patient with 
nonspecific febrile syndrome (NFS) and a 
pre-existing positive case was the variable that 
best explained the probability of being positive 
for dengue. In Table 1, we summarized the 
descriptive measures of the selected predictor 
variables (demographic, socioeconomic and 
ecological) of patients with nonspecific febrile 
syndrome. Mean values of the socioeconomic 

variables were very similar between cases and 
control patients (Figure 2). On the contrary, 
the mean value of the ecological variables 
(particularly the distance to the canals and 
cemeteries) was lower for positive cases, while 
the mean age was slightly higher for dengue 
cases (Figure 2). Individually, socioeconomic 
variables were less strongly associated 
with the probability that a febrile patient is 
positive for dengue than ecological variables 
(Table 2). The variables that best explained 
the probability that a patient with NFS was 
positive for dengue were distance to the closest 
preexistent case, age of the patient, vegetation 
index (NDVI), distance to cemeteries, and 

Figure 1. Left. Distribution of positive (orange) and negative (black) cases of dengue. The box shows the downtown 
area and macrocenter. Right: dengue infection probability map; higher values indicate higher chances of a suspected 
patient being positive for dengue. Gran San Miguel de Tucumán, Tucumán, Argentina, 2016.
Figura 1. Izquierda. Distribución de casos positivos (naranja) y negativos (negros) para dengue. El recuadro muestra la 
zona céntrica y el macrocentro. Derecha. Mapa de probabilidad de infección por dengue; los valores más altos indican 
mayores probabilidades de que un paciente sospechoso sea positivo para dengue. Gran San Miguel de Tucumán, 
Tucumán, Argentina, 2016.

Factor Estimate SE z-value P-value
Sex 0.12 0.17 0.7150 0.47
Population density 0.09 0.08 1.0750 0.28
Unsatisfied basic needs -0.05 0.09 -0.5190 0.60
Insufficient household quality 0.20 0.09 2.2760 0.0228*
Overcrowding -0.03 0.09 -0.3820 0.70
Primary education 0.12 0.09 1.3500 0.18
NDVI -0.29 0.10 -2.2867 0.00283**
Soil surface temperature 0.14 0.09 1.6160 0.11
Distance to canals -0.09 0.09 -1.0570 0.29
Distance to cemeteries -0.22 0.09 -2.4680 0.0136*
Minimum distance -0.32 0.12 -2.7570 0.00583**
Signif. codes: ***0.001, **0.01, *0.05

Table 2. Summary of the association between the explaining variables (Factor) and the probability of a nonspecific 
febrile syndrome patient being positive for dengue. NDVI: normalized difference vegetation index.
Tabla 2. Resumen de la asociación entre las variables explicativas (Factor) y la probabilidad de que un paciente con 
síndrome febril inespecífico sea positivo para dengue. NDVI: índice de vegetación de diferencia normalizada.
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Figure 2. Description 
of A) demographic, B) 
socioeconomic, and 
C) ecological variables 
of the positive (n=168) 
and negative (n=6139) 
patients of dengue in 
GSMT, Tucumán, during 
2016. NDVI: normalized 
difference vegetation 
index.
Figura 2. Descripción de 
variables A) demográficas, 
B) socioeconómicas, 
y C) ecológicas de los 
pacientes positivos 
(n=168) y negativos 
(n=6139) para dengue en 
GSMT, Tucumán, durante 
2016. NDVI: índice de 
vegetación de diferencia 
normalizada.
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insufficient household quality. The model 
that best explained the probability of having 
dengue included distance to virus sources, 
three ecological variables (NDVI and distance 
to canals and cemeteries), one socioeconomic 
variable (educational precariousness of head 
of household) and patient age. The proximity 
to pre-existing cases, cemeteries and canals, 
scarcity of surrounding vegetation, age, and 
educational precariousness in a censal radius 
increased the probability of being positive 
for dengue (Table 3). Figure 1 shows the map 
of the probability in having dengue of a 30-
year-old person in GSMT without considering 
the distance to the nearest infected neighbor 
(because it depends on the case). More 
information on the complete set of models 
we considered to explain the probability of 
being positive for dengue can be found in the 
Supplementary Material-Table S2.

D���������
Our results highlight the importance of using 

a multidisciplinary approach to understand 
the functioning of dengue outbreaks. This 
study evaluates the association between 
sociodemographic and eco-epidemiological 
variables with the risk of dengue infection 
in an urban area of northwestern Argentina. 
The model with the highest predictive capacity 
included social and ecological indicators, 
demographic characteristics of the patient and 
proximity to virus sources. During the 2016 
outbreak, in Gran San Miguel de Tucumán, the 
social-ecological variables that were associated 
with a higher probability of having dengue 
were the distance to a positive case, the age 
of the patient, educational precariousness 
and proximity to canals and cemeteries. These 
findings show the importance of controlling 
spatial autocorrelation of epidemiological 
output and addressing both human and 

ecological components, and their interactions. 
Other studies have evaluated some of these 
variables or a group of them simultaneously 
(Brunkard et al. 2007), but few studies have 
considered them as a whole and very few 
have controlled potential biases due to poorly 
georeferenced patients. 

This study presents a novel approach that 
contrast a group, that had nonspecific febrile 
syndrome (NSF) was negative for dengue 
and NSF cases diagnosed with dengue fever. 
Most studies evaluating the prevalence of 
dengue fever in relation to population density 
disregard the difficulties in georeferencing 
some cases (e.g., those occurring in poorly 
urbanized). The bias that we may have and 
that always occurs with the notifications 
of these pathologies is to have precise data 
on the residence in some areas and lack of 
analyzable information in other areas of the 
province. In this context, the methodology 
proposed here attempts to analyze the entire 
analyzable population (in terms of precise 
georeferencing data available) as the set of 
patients who arrived at the public health 
system with the same syndrome. Among 
all this exposed population, only some were 
positive for dengue (cases) while others 
did not have the disease (control). In this 
way, we evaluated the probability of each 
patient having dengue according to their 
environmental (residence), social (census 
radius) and epidemiological (individual and 
residence) context. Thus, we understand that 
our inferences are an unbiased interpretation 
of the dengue contagion. Furthermore, the 
Tucumán patient who arrived at the Public 
Health Laboratory with non-specific febrile 
syndrome could be positive for another 
pathology. In this study we only considered 
the pathology of dengue that shares the same 
syndrome with other infections. However, 
our approach was specific to dengue and 

Factor Estimate SE z-value P-value
Intercept -1.36715 0.09289 -14.718 <2e-16***
Minimum distance -0.23695 0.11802 -2.008 0.04467*
Age (years) 0.19389 0.08868 2.186 0.02880*
Primary education 0.18430 0.10414 1.770 0.07679
NDVI -0.27981 0.10411 -2.688 0.00720**
Distance to canals -0.28206 0.10553 -2.673 0.00752**
Distance to cemeteries -0.24951 0.10120 -2.465 0.01368*
Signif. codes: ***0.001; **0.01; *0.05

Table 3. Summary of the best-fit model (AIC=790.71; df=7; weight=0.4937) for the probability of being positive for 
dengue in a multivariate logistic model within Gran San Miguel de Tucumán, 2016.
Tabla 3. Resumen del modelo de mejor ajuste (AIC=790.71; df=7; peso=0.4937) para la probabilidad de ser positivo a 
dengue dentro del Gran San Miguel de Tucumán, 2016.
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therefore we did not consider the subsequent 
diagnosis of the rest of the patients who were 
diagnosed negative for dengue. The drawback 
highlighted does not constitute bias: it is just 
a mistake, but there is no reason to think that 
this occurs disproportionately under some 
social or ecological conditions.

Different studies highlight the problems 
that incorrectly georeferenced cases pose 
to adequately addressing the infection 
process of dengue fever (Oliveira et al. 2013; 
Stewart-Ibarra et al. 2014). By contrast, a 
study carried out in Mexico also used a case-
control approach, but it did not consider the 
distance to previous cases as an indicator of 
the virus presence (Sánchez-Hernández et al. 
2021). We acknowledge that our approach 
could present some drawbacks. For example, 
an outbreak of other pathologies generating 
nonspecific febrile syndrome could present 
an aggregated pattern that increases the 
uncertainty of the predictions, but it does 
not constitute bias. However, no pattern of 
spatial aggregation was detected in a visual 
inspection of our dataset (Figure 1). Besides, 
the inclusion of the distance to previously 
infected persons is essential to understand 
the epidemiology, especially if the disease is 
not endemic to a region; the inclusion of this 
variable controls for spatial autocorrelation of 
positive cases and the statistical significance of 
the contribution of each variable is less likely 
to be overstated. 

Our study shows a large dispersion of positive 
cases of dengue within the urban area. Since 
dengue is predominantly an urban pathology 
(Harapan et al. 2020) we focused in the area 
of GSMT, mirroring many other studies 
evidencing transmission hotspots in urban 
centers (Barrera et al. 2000; Stewart-Ibarra 
et al. 2014). The NSF population with was 
concentrated in the downtown area (highest 
population density) while positive cases were 
more homogeneously distributed within 
GSMT. Some areas of recent or precarious 
urbanization are underrepresented due to 
the impossibility of correctly georeferencing 
addresses (e.g., north and south areas), a 
problem that has been described in other 
studies (Das et al. 2017). 

The growing urban concentration of the 
population suggests that future outbreaks 
may be more detrimental. Since the decade 
of the 1970s Tucumán underwent a significant 
urbanization process, with 81% of population 
living in urban areas (INDEC, 2010) and GSMT 

hosts almost 70% of the total population of 
the province and presents an aggregated and 
asymmetric growth (Gutiérrez Angonese 2015; 
del Castillo 2015). Since 1986, when dengue 
was reintroduced into Argentina to the present, 
Tucumán underwent four periods of dengue 
outbreaks: 2009, 2016, 2020 and 2023, during 
the COVID-19 pandemic. These outbreaks 
seem to increase their frequency over time 
probably associated with increasing urban 
temperatures and regional rainfall (Rodríguez 
et al. 2015) but mainly with international 
movement (De Haas et al. 2019).

Risk factors for the presence of positive cases of 
dengue

Proximity to a viraemic individual increase 
the probability of contagion by providing the 
virus that is the limiting factor in non-endemic 
regions. Some studies found an aggregated 
pattern of dengue cases (e.g., Stewart-Ibarra 
et al. 2014), highlighting their role as sources of 
virus. A study that considered the distribution 
of cases over time found that the distance 
between cases increases with time since 
first case, probably due to under-reporting 
of positive cases (Vazquez-Prokopec et al. 
2010). However, although it is essential to 
inform public health strategies, the distance 
from infected people is rarely assessed in 
contagion risk analyses. The early detection 
of dengue cases and the quantification of the 
influence area is essential to determining the 
area that should be targeted for preventive and 
fumigation actions. However, one limitation of 
our analysis is that it assigns a fixed location 
to patients and does not consider patient 
movement or action radius. Although it would 
be demanding and methodologically complex, 
it might be valuable to include in the model 
the areas visited by each patient to consider 
alternative contagion sites. 

Our analysis shows that the probability 
of having dengue increases with age. The 
results of other studies were not always 
consistent with our results, partly because 
certain studies treated age as a categorical 
variable (Braga et al. 2010; Soghaier et al. 
2014). In Sudán, the presence of antibodies 
was found to be more frequent in people 
under 35 years (Soghaier et al. 2014), and in 
Ecuador, the mean age of patients infected 
with dengue was 20 years (Stewart-Ibarra 
et al. 2014). In contrast with these results, a 
study in Brazil found that seroprevalence was 
sharply higher in people older than 15 years 
(Braga et al. 2010). In this study, we included 
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age as a continuous variable, and we evaluated 
people with dengue on a particular date (i.e., 
the probability of having antibodies from 
previous infections increases with age). The 
age of the patients in our study ranged from 0 
and 92 years with an average age of 32 years. 
It is expected that economically active people 
have higher exposition to contagion due to 
greater movility. 

Our results suggest that educational 
precariousness, rather than household 
precariousness, is a better indicator of 
the probability of having dengue. Unlike 
many studies that found a higher incidence 
of dengue in areas with household and 
infrastructure precariousness (Braga et al 
2009; Brunkard et al. 2007; Ryan et al. 2019), 
our study suggests that housing conditions 
do not sharply influence the contagion 
probability. It is likely that spatial aggregation 
(censal radii) is not good enough to capture 
this effect and that some environmental 
variables, such as distance to canals (measured 
for each individual patient) partly reflecting 
socioeconomic precariouness. 

Environmental variables seem to strongly 
influence the probability of having dengue. 
The median NDVI within a 250 m radius 
around each NSF case was negatively related 
with the probability of having dengue, while 
Proximity to cemeteries and canals increased 
that probability. Other studies that analyzed 
the association between NDVI and dengue 
found overall similar results (Qi et al. 2015; 
Huang et al. 2018), but other studies also found 
the opposite association (Martínez-Bello et 
al. 2017). Our result can be counterintuitive, 
considering that greener areas have a higher 
abundance of insects. We would expect that 
areas with more vegetation cover would 
increase the probability of infection due to the 
presence of the vector. However, Aedes aegypti 
has urban habits, for which it is expected that 
more urbanized areas (with lower availabil-
ity of green areas) are associated with greater 
vector presence. Besides, a study carried out 
in San Pablo found that higher incidence of 
dengue in areas with lower vegetation was due 
to the effect of urban heat islands (Araujo et 
al. 2015). Urbanization involves alterations 
in land use and replacement of vegetation 
cover by impervious infrastructure (houses, 
buildings, roads, highways, etc.), generating 
an increase in temperature, known as urban 
heat islands (UHI). Tucumán has increased its 
population, generating important changes in 
the patterns of inland use: on the one hand, it 

has increased built in the downtown area; and, 
on the other hand, it has expanded its urban 
area to the outskirts of the city, occasionally 
to areas with low infrastructure (Gioia et al. 
2014). More humans, more food resources 
for the vector, but also places with water 
(i.e., flower containers, containers in general) 
increase the establishment of the vector in 
earlier stages. Therefore, the combination of 
the habits of the mosquito and the presence 
of sites for its reproduction provides an 
adequate scenario for the proliferation of A. 
aegypti. Some of these indicators represent 
underlying processes, such as the proliferation 
of landfills and situations of fragility, such as 
the proliferation of open-air dumps that are 
not adequately captured by socioeconomic 
indicators, and which cannot be mapped with 
remote sensing (Malizia et al. 2020).

The attributes of the social and ecological 
variables are not homogeneously distributed 
within the Gran San Miguel de Tucumán. 
This work shows that the probability of 
being positive for dengue can increase as 
some social and ecological variables increase 
or decrease. Specifically, areas with lower 
NDVI values, closer to canals and cemeteries, 
and lower level of primary education would 
be more likely to present positive cases of 
dengue. In this context, it can be seen that 
the peripheral areas and, in particular, those 
in the northeastern sector, are the most 
likely to present positive cases for dengue.  
These are the areas where we were unable 
to obtain accurate spatial references. This 
situation highlights the need to incorporate 
new tools at the time of patient data that help 
to improve the quality of spatial data. With 
this information, we can design more precise 
studies that visualize the problem of dengue 
in the province, in a spatial-temporal context 
where the entire exposed population is equally 
representative.

The global increase in the incidence of 
dengue is likely to continue in the coming 
years. Intensification of urban life, internal and 
international migration and the global increase 
of temperatures will not revert in the short-
term. The increase gives place to a complete 
vector cycle of the vector throughout the year 
in subtropical areas, exacerbated by urban heat 
islands. Urban vegetation decreases both in 
urban expansion areas and in downtown 
areas were construction intensifies (Paolini et 
al. 2016). As property costs increase, precisely 
vulnerable people have access to a lower 
proportion of urban vegetation (Spescha et 
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al. 2020), which suggest that different forms 
of urbanization may affect habitat quality, 
environmental health and human well-being. 
If considering that an increasing number of 

people will use the same area, it is urgent to 
address which ‘models’ of urban expansion 
are more efficient and compatible with the 
quality of life of its inhabitants.
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