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A�������. The lack of reproducibility of scientific results is jeopardizing the trust in science. An effort to inform 
the dynamic, but non-arbitrary, nature of scientific evidence is required along with strengthening the reliability 
of published results. Concerns and actions aimed at testing and increasing the reproducibility of scientific 
conclusions are usually directed at increasing data validation through careful management of the data-curation 
process, paying a�ention to the empirical aspects of hypotheses testing. But important as they are, these aspects 
may be vulnerable to the perils of radical empiricism and therefore should be combined with more theoretical 
and conceptual tools. Pa�ern consistency and an understanding of the physiological, behavioral, or ecological 
mechanisms that cause pa�erns make scientific assertions more robust. Testing a priori hypotheses (e.g., about 
functional biological traits) with fresh (and redundant) evidence offers theoretical as well as empirical support 
for ecological research and may help strengthen the reliability of published results.

[Keywords: a priori hypotheses, biological traits, computational reproducibility, empirical reproducibility, 
mechanisms, theory]

R������. La función de la teoría para mitigar la ‘crisis de reproducibilidad’. La falta de reproducibilidad 
de los resultados científicos desafía la confianza en ellos. Se requiere un esfuerzo tendiente a difundir la 
naturaleza dinámica, aunque no arbitraria, de la evidencia científica, además de instrumentar medidas para 
aumentar la confianza en los resultados publicados. La reflexión y las acciones dirigidas a evaluar e incrementar 
la reproducibilidad de las conclusiones científicas suelen estar dirigidas a aumentar la validez de los datos 
a través de un manejo cuidadoso de su proceso de curación, prestando atención a aspectos empíricos de la 
puesta a prueba de hipótesis. Sin embargo, estos importantes aspectos no son suficientes porque solo atienden 
elementos empíricos y técnicos de la prueba (i.e., diseño experimental, datos, análisis estadístico), por lo 
que deberían complementarse con herramientas teóricas y conceptuales que incrementen la confianza en las 
conclusiones. Tanto la robustez de los patrones ecológicos como la comprensión de los mecanismos fisiológicos, 
comportamentales y ecológicos que los causan contribuyen a dar solidez a las conclusiones. La puesta a prueba 
de hipótesis a priori (e.g., sobre rasgos biológicos funcionales) con evidencia novedosa (y redundante) ofrece 
a la investigación en ecología el apoyo simultáneo de datos y un entramado teórico actualizado y pertinente, 
contribuyendo a incrementar la confiabilidad en los resultados que se publican.

[Palabras clave: hipótesis a priori, mecanismos, rasgos biológicos, reproducibilidad computacional, 
reproducibilidad empírica, teoría]

Recibido: 3 de Agosto de 2023
Aceptado: 23 de Diciembre de 2023* lmarone@mendoza-conicet.gob.ar

Editor asociado: Fernando Unrein

The ability of science to understand the 
world is threatened by misinformation that 
jeopardizes trust in science (Amara 2022). 
In a ‘post-truth era’, there is much work to 
be done to explain the method of science to 
the public and policy makers, teaching the 
dynamic nature of research in which both 
failure to predict results and revision of 
earlier findings are not infrequent (González 
del Solar and Marone 2001; Roper 2022). If 
the provisional, but nonarbitrary, nature of 
scientific knowledge is not taught, shifts in 
understanding may impel people to believe 
that science cannot be trusted. However, 
this educational effort must be accompanied 
by a commitment from the research 
community to raise confidence in scientific 

results by improving the quality of data and 
interpretations (Ioannidis 2014).

There are therefore serious concerns about 
the reproducibility and generalizability of 
scientific results, encouraging a cultural shift 
in transparency and data quality (Leonelli 
2016; Parker et al. 2016; Berg 2018; McCord 
et al. 2021) in many disciplines (Marone et al. 
2000; Baker and Penny 2016; Forstmeier et al. 
2017; Ihle et al. 2017; Hutson 2018; Bishop 2019; 
Desjardins et al. 2021; Kaiser 2021; Sikorski 
2022). An interesting example for ecology 
is the need to carefully assess the reliability 
and reproducibility of the evidence that can 
justify optimistic and pessimistic positions 
regarding the environmental crisis (Grau 
2022, 2023). Hereinafter, I will review the main 
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causes of irreproducibility of research results 
in empirical sciences along with the typical 
actions the scientific community is carrying 
out to correct this rising problem (Oza 2023). 
Afterwards, I will point out and assess in 
detail the not sufficiently emphasized role 
that theory plays —in particular, evolutionary 
theory and natural- history hypotheses— in 
mitigating the reproducibility crisis in ecology 
and other disciplines.

To avoid confusion about the meaning of 
terms, empirical reproducibility (sometimes 
referred to as replicability) (Desjardins et al. 
2021) considers the ability to obtain the same or 
a very similar result during the test of the same 
scientific hypothesis with the same or with a 
different, but equally pertinent, methodology 
in the lab or the field (Marone et al. 2019), 
whereas computational reproducibility 
focuses on the ability to produce equivalent 
analytical outcomes from the same data 
set using the same code and software as 
the original study (Peng 2011; Powers and 
Hampton 2019). Redundant results reached 
using different methodologies based on 
different assumptions (e.g., experiments, 
planned observations or simulations) are 
valuable because the inferences drawn from 
them often have higher external validity 
(i.e., they are robust and, in principle, can be 
generalized across a wider domain) (Marone 
et al. 2000; Munafó and Smith 2018; Desjardins 
et al. 2021). Reproducibility constitutes a 
requisite for reliable and predictive scientific 
knowledge, and reproducibility failures are 
among the most important concerns of the 
scientific community today (Baker and Penny 
2016; Kaiser 2021).

First of all, irreproducibility in many 
disciplines may result from the variability 
of nature and historical contingency (Bissell 
2013; Fidler et al. 2017; Pérez-Velázquez 2019; 
Desjardins et al. 2021). For example, ecological-
evolutionary phenomena may be context-
dependent (e.g., in space, time, species), and 
gradual changes in the ecosystem —as well 
as legacies of past events— may make such 
systems bear little resemblance to earlier 
states. They are ontological determinants of 
the lack of reproducibility, irregularities in 
the natural world that often disappoint the 
scientist engaged in field studies aiming at 
predicting natural phenomena. Aiming at 
solving this problem, Powers and Hampton 
(2019) suggested that ecologists can still 
achieve computational reproducibility even 
though field observations may never be 

completely or perfectly reproduced. This 
claim is, however, arguable. Firstly, in silico 
‘experiments’ are only plausible images of 
a real situation, not the actual real situation 
(Gunawardena 2014). Some unknown 
drivers will be absent in simulations because 
unrecognized parameters obviously cannot 
be consciously included in a model, yet they 
are present, exerting their effects, in nature. 
The existence of hidden assumptions makes 
empirical studies more realistic. Additionally, 
in silico irreproducibility also seems to be 
unavoidable if artificial intelligence algorithms 
are used to derive expertise from experience. 
In machine learning, for example, the way 
data are trained influences the performance 
of any algorithm that ‘learns’ by trial and 
error, because performance is sensitive 
not only to the exact code used, but also to 
the random numbers generated to initiate 
training and to settings that are not core to 
the algorithm, but that affect how quickly it 
‘learns’ (‘hyperparameters’) (Hutson 2018). 
Despite the undeniable value of simulations 
in research and the stimulating advances in 
computer science, researchers dealing with 
the high variability of ecological phenomena 
in the real world will continue to need some 
conventional science methodology (Werner 
1998; Marone et al. 2019).

Another source of irreproducibility is 
associated with the method of science, the 
variety of its associated techniques and various 
psychological and sociological aspects of 
scientific practice: they are mostly gnoseological 
determinants of irreproducibility. Baker and 
Penny (2016) reported the results of a survey 
of 1576 researchers who were asked about 
which factors they thought contributed 
most to irreproducible research. Psycho-
sociological aspects that often interact with 
more methodological ones, such as selective 
reporting (70%), pressure to publish (>60%), 
insufficient mentoring (50%), raw data 
not available in the original lab (>40%), 
code unavailable (>40%), fraud (40%), and 
insufficient peer review (almost 40%) were 
highly rated, together with other purely 
methodological weaknesses, such as poor 
analysis (almost 60%), insufficient replication 
in the original lab (50%) and poor experimental 
design (>40%).

According to these figures, the combination 
of selective reporting and an excessive 
pressure to publish novel and ‘exciting’ results 
might be among the most important sources 
of the lack of confirmation of some published 
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studies. Selective reporting takes several forms 
depending on the type of study and consists 
of trying many analyses, but reporting only 
those that are ‘statistically significant’. For 
example, repeating an experiment 18 times 
always reaching negative results and finally 
publishing the results of the 19th trial that 
rejects the null hypothesis (Bishop 2019) or 
reporting the significant correlation between 
one empirical indicator of an effect on a 
dependent variable after having carried out 
a multiple test that involved fifteen other 
unreported empirical indicators of the same 
effect, which did not correlate with the 
dependent variable (Forstmeier et al. 2017). 
Selective reporting is well known (Jennions 
and Moller 2002; Lehrer 2010; Frasser et 
al. 2018; Bishop 2019; Kaiser 2021), but its 
impact on the validity of scientific inferences 
is hardly taught to young scientists and may 
still be insufficiently debated (but see Ihle et 
al. 2017).

On the contrary, there is substantial concern 
about the need to pay attention to data curation 
and the quality of the techniques used to draw 
inferences from them (Editors 2014; Ioannidis 
2014; McNutt 2014; Fidler et al. 2017; Ihle et 
al. 2017; Berg 2018). More precisely, there are 
many initiatives prescribing the improvement 
of study designs, the full description of 
experiments, the recording and sharing of raw 
data in repositories and more precise reporting 
of statistical analyses and their results. These 
initiatives are aimed at wisely managing 
the data-curation process to increase data 
validation.

A substantial part of hypothesis-driven 
research consists of testing hypotheses with 
fresh evidence. The data take the form of 
a number of observational statements that 
should reflect the natural facts (Figure 1, right 
side) (Hempel 1966; Bunge 1998). Therefore, 
well-validated data are those that correspond 
reliably to the facts, which depends on the 
careful consideration of several auxiliary 
hypotheses or assumptions that surround 
data collection (Figure 1, right side). Are the 
techniques used for data gathering sound? 
Are the theories underlying these techniques 
correct? What are the main sources of 
potential bias in the data or what are the main 
assumptions that, if proven false, would have 
biased the data? Also, on the right hand side of 
Figure 1, the confidence of results achieved by 
statistical inference matters (e.g., the statistical 
power of the analysis, whether the critical 
assumptions of statistical tests are met, the 

number and types of replicates taken, the way 
variables are controlled and randomized, the 
criteria for excluding any data in the analysis, 
the level of significance established, the size 
of the effect detected). Studies that do not 
follow best practices on data curation and 
statistical analysis could reasonably fail in 
reproducibility and, conversely, there is 
evidence that ‘methodologically optimal 
experiments’ may be highly reproducible 
(Sikorski 2022). Then, the attention paid to 
data curation and sound analyses to increase 
data validation is widely justified (Ioannidis 
2014).

But there is another way to mitigate the 
crisis. It is related to the left side of the 
scientific method (Figure 1) and is less 
considered in the irreproducibility literature 
than the psychosociological and empirical 
factors described above. Testing more or 
less formal theoretical constructs with the 
hypothetico-deductive method (e.g., Popper 
1959; Bunge 1998; Marone and Galetto 
2011) requires deducing a hypothesis (i.e., 
a description of how the reality under 
analysis would be if the construct is ‘true’) 
and predictions (i.e., the same description, 
but stated in a ‘directly testable’ way, under 
field or laboratory conditions) (Farji-Brener 
2020). The premises of the deductive process 
will be the starting theory or theories along 
with other assumptions that may be called 
‘initial conditions’. If at least the most critical 
assumptions are considered and the theories 
are ‘true’ or approximately true, the hypothesis 
deduced is said to be plausible, not a certainty. 
While in formal logic a deduction from ‘true’ 
premises warrants the ‘truth’ of the conclusion, 
in the reasoning of the empirical sciences 
some factual uncertainty always remains in 
the premises and then the deduction can only 
make the conclusion plausible (Bunge 1998). At 
the same time that the hypothesis is deduced 
by proceeding through that logical sequence, 
the hypothesis is made plausible a priori 
(before data gathering) by going backward 
in the logical sequence to the support offered 
by the updated scientific knowledge (e.g., 
theories, initial conditions) included in the 
premises (Bunge 2012).

This situation is familiar to modelers, who 
consider their models (hypotheses) as mere 
descriptions of their assumptions about 
reality that could only be as plausible as the 
assumptions (Gunawardena 2014). According 
to this perspective, a model has the virtue that, 
as long as the math has been done correctly, if 
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the assumptions correspond to the real system, 
the predictions of the model will reasonably 
correspond to reality. In applied ecology, 
trustworthy assumptions make a model 
theoretically sound, and its predictions may 
occasionally be considered reliable enough 
without further assessment. For example, 
consider a minimum viable population value 
calculated by a wildlife management model. 
The manager will apply the value aiming at 
conserving an endangered population without 
making any further experiments. In the best 
case, the truth value of the prediction will 
be evaluated during a monitoring program 
following application. On the other hand, in 
basic ecology the model would be considered 
plausible a priori, which is a good enough 
reason to take the prediction seriously and, 
eventually, test it with fresh evidence (Kerr 
1998; Bunge 2012; Marone et al. 2019).

By the way, the lack of theoretical foundation 
is typical of the assertions made by the 
pseudosciences or by post-truth activists. 
Debunking these unsubstantiated claims is 
more a matter of lack of theoretical support 
than of specific data (i.e., the data might 
eventually match some expectations of such 
allegations just by chance) (McNutt 2014) in 
the worthy task of avoiding the slipperiness 
of empiricism (Bunge 1998; Kerr 1998; Lehrer 
2010) or the ‘one shot game’ in hypotheses 
testing (Marone et al. 2019).

This reasoning is the most important 
argument against hypothesizing after the 
results are known (HARKing) (Kerr 1998), 
which is typical of data-driven exploratory 
research (Ihle et al. 2017; Mitchell et al. 
2018). HARKing often leads to generate a 
hypothesis that researchers would never 
have deduced from theory (Forstmeier et al. 
2017), and whose plausibility was therefore 
never established (Bunge 1998). Together 

with this hypothesis, there are, in principle, 
numerous other alternative hypotheses, which 
are usually ignored, but that could account for 
the same results (i.e., underdetermination, see 
Leonelli 2016). Further, the testing of such ad 
hoc and post hoc hypotheses is intrinsically 
circular because the same data are used to 
both generate and test them, and there is 
no way to reject them (Bunge 1998; Kerr 
1998). Publishing the ‘confirmation’ of this 
kind of hypotheses is, consciously or not, a 
sort of ‘selective reporting’. In Kerr’s (1998) 
words: “… whereas a genuinely a priori 
hypothesis has some theoretical or empirical 
foundation that is independent of the current 
result … an explicitly post hoc hypothesis 
implicitly acknowledges its dependence 
upon the result in hand as the cornerstone 
(or perhaps, the entirety) of its foundation…”. 
All these arguments justify the use of a priori 
hypotheses as a plausible tool for establishing 
more reproducible research results and, 
consequently, more reliable inferences.

By way of example, the hypothesis that 
seed-eating birds maximize energy intake 
rates while feeding, and its prediction that 
seed-eating birds will consume large rather 
than small seeds in controlled experiments 
(Cueto et al. 2001), could be deduced from 
two major theoretical frameworks (i.e., the 
theory of adaptation by natural selection, 
and the associated optimal foraging theory), 
together with several critical assumptions 
(e.g., that larger seeds provide more energy 
reward per unit of time). Although theories are 
always open to revision, the former are usually 
assumed to be true due to their heuristic value 
and reasonable evidence supporting them. 
The critical assumptions, in turn, are more 
reliably assumed if they are corroborated in 
light of fresh, independent data. Thus, when 
such a priori hypothesis and their predictions 
are corroborated for some bird species (e.g., 

Figure 1. The hypothetico-deductive method outlined to test an a priori hypothesis. On the right side, the assumptions 
regarding data gathering and analyses (e.g., about the techniques and materials used in the field or the lab as well 
as the statistical analyses used to draw inferences) are emphasized. On the left side of the scheme, the assumptions 
highlighted are those corresponding to the starting theories used together with the initial conditions necessary to 
deduce the hypotheses and predictions to be tested.
Figura 1. Resumen del método hipotético deductivo empleado para poner a prueba una hipótesis concebida a priori. 
A la derecha de la prueba, los supuestos vinculados con la obtención y el análisis de datos (e.g., los que subyacen las 
técnicas y materiales empleados en el campo o el laboratorio y los asociados al análisis estadístico usado para hacer 
las inferencias). A la izquierda del esquema, las hipótesis y teorías de partida, que se suponen ‘verdaderas’, junto con 
algunas condiciones iniciales pertinentes para deducir las hipótesis de trabajo y sus predicciones.
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Saltatricula multicolor, Zonotrichia capensis) 
(Marone et al. 2022), confidence in them 
comes from general evidence (i.e., adaptation, 
rational decision, information on seed energy 
reward) as well as more specific evidence (i.e., 
the result of laboratory trials carried out under 
the guidance of the hypothesis). Mechanismic 
a priori hypotheses (Bunge 1998; Marone and 
Bunge 1998) link theory (e.g., knowledge of 
natural history within an adaptive context) 
with ecological patterns (e.g., seed preferences 
or diet composition), so that the inference is 
supported simultaneously by a plausible 
theoretical framework and fresh specific 
evidence. The research program advised 
by Earl Werner (1998) is an example of this 
approach that emphasizes the integration 
of theoretical + experimental work to 
generate mechanismic hypotheses with more 
descriptive work to test predictions in the 
field. It is the iteration of theory, experiments 
and a proper field pattern that is so valuable 
(Werner 1998; Marone et al. 2019). A priori 
hypotheses are effectively at risk when faced 
with realistic field-ecological results. For 
example, and with respect to the studies of 
granivorous birds in central Argentina, lab 
experiments suggest that the abundance of 
the Yellow Cardinal (Gubernatrix cristata) 
should decrease in fields used for livestock 
due to the reduction of critical food resources 
there (i.e., medium and large grass seeds) 
(Marone and Camín 2022). If this pattern is 
not found after a reasonable research effort, 
the hypothesis must be discarded and other 
plausible reasons to account for the habitat 
selection of the cardinal should be proposed 
and tested.

The research approach based on the use of 
biological traits as a priori hypotheses on the 
natural history of the organisms to explain 
and predict ecological patterns successfully 

foresaw, for example, many of the responses 
of herbaceous plants to grazing (Díaz et al. 
2001), of interacting species to climate change 
(Schleuning et al. 2020), of birds invading new 
habitats (Sol et al. 2012), of bird composition 
in urbanization gradients (Croci et al. 2008; 
Camín et al. 2022), of bird species to habitats 
subjected to bush thickening (Seymour 
and Dean 2010) and cattle grazing (Martin 
and Possingham 2005; Sagario et al. 2020). 
Besides the theoretical support (Figure 1, left 
side), the results of several empirical tests 
guided by the hypotheses are ideally needed 
(Figure 1, right side) to reduce the probability 
of false positives obtained by chance and of 
committing a Type I statistical error (i.e., 
‘empirical robustness’ [Stegenga 2009; Nichols 
et al. 2019]). Obviously, sometimes the results 
do not meet predictions and the hypothesis 
should then be rejected. In any case, the 
combined feedback of theory with fresh and 
redundant evidence provides an instance of 
valuable reflection on the validity of results 
before they are published.
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