SUPPLEMENTARY MATERIAL

Table S1. Characterization of the permanent plots included in this study in La Mucuy and San Eusebio in the Cordillera de Merida, Venezuela. Average soil pH and total carbon are based on soil cores (n=9 in La Mucuy; n=5 in San Eusebio) in the A horizon (0-10 cm in La Mucuy, 0-30 cm in San Eusebio). Average annual temperatures correspond to field measurements inside the forest canopy taken during 2017 (every hour for 1 year) at 1.5 m above the ground with HOBO TidbiT v2 sensors protected from direct radiation.

Tabla S1. Caracterización de las parcelas permanentes incluidas en este estudio en La Mucuy y San Eusebio en la Cordillera de Mérida, Venezuela. El pH promedio del suelo y el carbono total se basan en muestras de suelo (n=9 en La Mucuy; n=5 en San Eusebio) en el horizonte A (0-10 cm en La Mucuy, 0-30 cm en San Eusebio). Las temperaturas medias anuales corresponden a mediciones de campo dentro del dosel tomadas durante 2017 (cada hora durante 1 año) a 1.5 m del suelo con sensores HOBO TidbiT v2 protegidos de la radiación directa.

Variable		La Mucuy			San Eusebio	
	MUC-01	MUC-02	MUC-03	SEU-01	SEU-02	SEU-03
Plot Dimensions (m)	60x60	60x60	60x60	50x100	50x100	50x100
Plot area (m ²)	3600	3600	3600	5000	5000	5000
Elevation (m a. s. l.)	2300	2500	2700	2315	2371	2451
Latitud (°)	8.6282	8.6256	8.6267	8.658533	8.6412	8.641117
Longitude (°)	-71.03	-71.04	-71.03	-71.40	-71.41	-71.40
Average slope (%)	25	15	20	12	5	3
Average annual	13.86	13.04	11.98	13.84	14.36	12.68
temperature (°C)						
Soil pH	3.94	3.87	3.76	3.86	3.88	3.85
Total C (%)	9.92	9.26	9.50	9.16	10.43	7.78
Total individuals ≥10 cm	324	327	320	567	355	432
alive in 2016						
Total individuals ≥10 cm	351	311	345	604	361	478
alive in 2022						

Table S2. Total number of species in each plot for 2016 and 2022. We also present the estimated richness based on individual rarefaction curves (Number spp. raref), and the Shannon (H') and Simpson (Ds) diversity indexes (based on the total basal area for each species).

Tabla S2. Número total de especies en cada parcela para 2016 y 2022. También se presenta la riqueza estimada basada en curvas de rarefacción individuales (Number spp. raref), y los índices de diversidad de Shannon (H') y Simpson (Ds) (basados en el área basal total para cada especie).

				Number of		
Study site	Plot	Year	Number of spp.	spp. (raref)	H′	Ds
La Mucuy	MUC-01	2016	38	38	2.97	0.922
		2022	38	37	2.94	0.922
	MUC-02	2016	39	38	2.85	0.907
		2022	38	38	2.93	0.918
	MUC-03	2016	38	38	2.98	0.923
		2022	38	37	2.91	0.914
San Eusebio	SEU-01	2016	38	33	2.77	0.901
		2022	41	34	2.85	0.906
	SEU-02	2016	47	45	3.11	0.935
		2022	46	44	3.07	0.932
	SEU-03	2016	43	39	3.07	0.936
		2022	45	40	3.10	0.936

Table S3. Species list for the study plots in La Mucuy and San Eusebio (Venezuela) indicating the family, genera, species, biogeographic origin, dispersal syndrome and the species abbreviation (abbv.) used in the multivariate analysis shown in Figure 3. The 'x' symbol means that the species is present at that plot.

Tabla S3. Lista de especies para las parcelas de estudio en La Mucuy y San Eusebio (Venezuela) indicando la familia, género, especie, o rigen biogeográfico, síndrome de dispersión y la abreviatura de la especie (Abbv.) utilizada en el análisis multivariado mostrado en la Figura 3. El símbolo 'x' significa que la especie está presente en esa parcela.

		Genus								
		biogeographic	Dispersal		MUC-		MUC-		SEU-	
Family	Species	origin	syndrome	Species abbv.	01	MUC-02	03	SEU-01	02	SEU-03
Lauraceae	Aiouea dubia	Neotropical	Zoochory	Aio dub			х	х	х	х
Lauraceae	Aiouea laevis	Neotropical	Zoochory	Aio lae				x		
Euphorbiaceae	Alchornea grandiflora	Pantropical	Zoochory	Alc gra	x	x		x	x	x
Cyatheaceae	Alsophila engelii	Pantropical	Hydrochory	Als eng	x	x	x			
Lauraceae	Aniba cinnamomiflora	Neotropical	Zoochory	Ani cin	x					
Lauraceae	Aniba robusta	Neotropical	Zoochory	Ani rob				x	х	x
Melastomataceae	Axinaea grandifolia	Neotropical	Barochory	Axi gra	x	х	x			
Lauraceae	Beilschmiedia latifolia	Neotropical	Zoochory	Bei lat	x		x	x	х	x
Lauraceae	Beilschmiedia tovarensis	Neotropical	Zoochory	Bei tov	x	х	x	x	х	
Sapindaceae	Billia rosea	Neotropical	Barochory	Bil ros	x	х	x	x	х	x
Salicaceae	Casearia tachirensis	Pantropical	Zoochory	Cae tac					x	
Celastraceae	Celastrus racemosus	Pantropical	Zoochory	Cel rac	x					
Melastomataceae	Centronia pulchra	Neotropical	Barochory	Cen pul				x	х	x
Solanaceae	Cestrum lindenii	Pantropical	Zoochory	Ces lin		х				
Rubiaceae	Cinchona pubescens	Neotropical	Anemochory	Cin pub				x		
Lauraceae	Cinnamomum triplinerve	Pantropical	Zoochory	Cin tri				x	х	x
Clethraceae	Clethra fagifolia	Pantropical	Anemochory	Cle fag	x	х	x	x	х	x
Clusiaceae	Clusia colombiana	Neotropical	Zoochory	Clu col						x
Clusiaceae	Clusia multiflora	Neotropical	Zoochory	Clu mul	x	х		x	x	x
Clusiaceae	<i>Clusia</i> sp.	Neotropical	Zoochory	Clu sp.	x	х	х			
Cyatheaceae	Cyathea parvifolia	Pantropical	Hydrochory	Cya par	х	х	x			

		Genus								
		biogeographic	Dispersal		MUC-		MUC-		SEU-	
Family	Species	origin	syndrome	Species abbv.	01	MUC-02	03	SEU-01	02	SEU-03
Cyatheaceae	Cyathea pauciflora	Pantropical	Hydrochory	Cya pau				х	x	х
Araliaceae	Dendropanax fendleri	Pantropical	Zoochory	Den fen				x	x	х
Araliaceae	Dendropanax veillonii	Pantropical	Zoochory	Den vei					x	
Fabaceae	Dussia coriacea	Neotropical	Barochory	Dus cor		х				
Lecythidaceae	Eschweilera tenax	Neotropical	Barochory	Esc ten				x		
Myrtaceae	Eugenia tamaensis	Pantropical	Zoochory	Eug tam	x	x	x	x	x	x
Rubiaceae	Faramea flavicans	Neotropical	Zoochory	Far fla		х	x			
Moraceae	Ficus tonduzii	Pantropical	Zoochory	Fic ton				x		
Moraceae	Ficus velutina	Pantropical	Zoochory	Fic vel				x	x	
Primulaceae	Geissanthus floribundus	Neotropical	Zoochory	Gei flo	x		x			
Primulaceae	Geissanthus fragrans	Neotropical	Zoochory	Gei fra				x	x	x
Theaceae	Gordonia fruticosa	Pantropical	Zoochory	Gor fru	x	x	x		x	
Melastomataceae	Graffenrieda latifolia	Neotropical	Barochory	Gra lat				x	x	x
Rubiaceae	Guettarda crispiflora	Neotropical	Zoochory	Gue cri	x	x	x		x	x
Chlorantaceae	Hedyosmum racemosum	Pantropical	Zoochory	Hed rac	x	x	x	x	x	x
Phyllanthaceae	Hieronyma fendleri	Neotropical	Zoochory	Hie fen				x	x	x
Phyllanthaceae	Hieronyma oblonga	Neotropical	Zoochory	Hie obl	x	x	x	x	x	x
Aquifoliaceae	Ilex laurina	Pantropical	Zoochory	Ile lau					x	x
Verbenaceae	Lippia hirsuta	Pantropical	Zoochory	Lip hir			x			
Sabiaceae	Meliosma herbertii	Holarctic	Zoochory	Mel her			x	x	x	
Sabiaceae	Meliosma pittieriana	Holarctic	Zoochory	Mel pit		x	x			
Melastomataceae	Meriania brachycera	Neotropical	Barochory	Mer bra			x	x	x	x
Melastomataceae	<i>Meriania</i> sp.	Neotropical	Barochory	Mer sp.					х	
Melastomataceae	Miconia aff. dodecandra	Neotropical	Zoochory	Mic dod	x	х	x			
Melastomataceae	Miconia cf. tovarensis	Neotropical	Barochory	Mic tov	x					
Melastomataceae	Miconia meridensis	Neotropical	Zoochory	Mic mer		x				
Melastomataceae	Miconia mesmeana	Neotropical	Zoochory	Mic mes		x				
Melastomataceae	Miconia minutiflora	Neotropical	Zoochory	Mic min			x			

		Genus								
		biogeographic	Dispersal		MUC-		MUC-		SEU-	
Family	Species	origin	syndrome	Species abbv.	01	MUC-02	03	SEU-01	02	SEU-03
Melastomataceae	Miconia sp.	Neotropical	Zoochory	Mic sp.						х
Melastomataceae	Miconia tabayensis	Neotropical	Zoochory	Mic tab			х			
Melastomataceae	Miconia theizans	Neotropical	Zoochory	Mic the					x	x
Melastomataceae	Miconia tinifolia	Neotropical	Zoochory	Mic tin	x				x	
Myrtaceae	<i>Myrcia</i> sp.	Neotropical	Zoochory	Myr sp.				x	x	х
Myrtaceae	Myrcia splendens	Neotropical	Zoochory	Myr spl	x	x	x	x	x	х
Myrtaceae	Myrcianthes karsteniana	Neotropical	Zoochory	Myr kar					x	
Myrtaceae	Myrcianthes rhopaloides	Neotropical	Zoochory	Myr rho						x
Primulaceae	Myrsine coriacea	Pantropical	Zoochory	Myr cor	x	x	x			
Lauraceae	Nectandra laurel	Neotropical	Zoochory	Nec lau				x		x
Lauraceae	Nectandra reticulata	Neotropical	Zoochory	Nec ret	x	x				
Lauraceae	Nectandra sp.	Neotropical	Zoochory	Nec sp.				x	x	
Lauraceae	Ocotea aciphylla	Pantropical	Zoochory	Oco aci	x		x			
Lauraceae	Ocotea aff. floribunda	Pantropical	Zoochory	Oco flo				x		
Lauraceae	Ocotea babosa	Pantropical	Zoochory	Oco bab				x		
Lauraceae	Ocotea calophylla	Pantropical	Zoochory	Oco cal			x			
Lauraceae	Ocotea karsteniana	Pantropical	Zoochory	Oco kar		x	x		x	x
Lauraceae	Ocotea macropoda	Pantropical	Zoochory	Oco mac		x	x	x	x	x
Lauraceae	Ocotea puberula	Pantropical	Zoochory	Oco pub	x					
Araliaceae	Oreopanax bogotensis	Neotropical	Zoochory	Ore bog						x
Araliaceae	Oreopanax sp.	Neotropical	Zoochory	Ore sp.	x	x				
Rubiaceae	Palicourea angustifolia	Neotropical	Zoochory	Pal ang	x					
Rubiaceae	Palicourea demissa	Neotropical	Zoochory	Pal dem						x
Rubiaceae	Palicourea leuconeura	Neotropical	Zoochory	Pal leu			x		x	
Rubiaceae	Palicourea sp.	Neotropical	Zoochory	Pal sp.					x	
Lauraceae	Persea aff. peruviana	Pantropical	Zoochory	Per per	x	x	x			
Lauraceae	Persea fendleri	Pantropical	Zoochory	Per fen				x		x
Lauraceae	Persea povedae	Pantropical	Zoochory	Per pov				x		x

		Genus								
		biogeographic	Dispersal		MUC-		MUC-		SEU-	
Family	Species	origin	syndrome	Species abbv.	01	MUC-02	03	SEU-01	02	SEU-03
Lauraceae	Persea sp.	Pantropical	Zoochory	Per sp.		х	х		х	
Piperaceae	Piper longispicum	Pantropical	Zoochory	Pip lon	x	х		x	x	
Podocarpaceae	Podocarpus oleifolius	Austral-antarctic	Zoochory	Pod ole				х		x
Rosaceae	Prunus moritziana	Holarctic	Zoochory	Pru mor	x	х	x			
Rosaceae	Prunus myrtifolia	Holarctic	Zoochory	Pru myr				x	x	x
Podocarpaceae	Retrophyllum rospigliosii	Austral-antarctic	Zoochory	Ret ros				x	x	x
Lauraceae	Rhodostemonodaphne sp.	Neotropical	Zoochory	Rho sp.			х			
Meliaceae	Ruagea glabra	Neotropical	Barochory	Rua gla					x	x
Meliaceae	Ruagea pubescens	Neotropical	Barochory	Rua pub			x	x	x	x
Meliaceae	Ruagea sp.	Neotropical	Barochory	Rua sp.						x
Myrtaceae	Rudgea marcano-bertii	Neotropical	Zoochory	Rud mar						x
Euphorbiaceae	Sapium stylare	Neotropical	Zoochory	Sap sty	x	х	х		x	
Buxaceae	Styloceras laurifolium	Neotropical	Zoochory	Sty lau					x	x
Symplocaceae	Symplocos amplifolia	Holarctic	Zoochory	Sym amp	x	х				
Pentaphylacaceae	Ternstroemia acrodantha	Pantropical	Zoochory	Ter acr	х	х		x	x	x
Euphorbiaceae	Tetrorchidium rubrivenium	Pantropical	Zoochory	Tet rub	x	х	х		x	
Staphyleaceae	Turpinia occidentalis	Holarctic	Zoochory	Tur occ		x			x	x
Viburnaceae	Viburnum tinoides	Holarctic	Zoochory	Vib tin	х				x	
Vochysiaceae	Vochysia gigantea	Neotropical	Anemochory	Voc gig				x		
Cunoniaceae	Weinmannia lechleriana	Austral-antarctic	Barochory	Wei lec	x	х	х			x
Cunoniaceae	Weinmannia pinnata	Austral-antarctic	Barochory	Wei pin			х			
Arecaceae	Wettinia praemorsa	Neotropical	Zoochory	Wet para				x		
Rutaceae	Zanthoxylum melanostictum	Neotropical	Zoochory	Zan mel	x	х		x		x

Table S4. Change in species richness and identity of the species gained and lost between the two censuses (2016 and 2022) in permanent plots in La Mucuy and San Eusebio.

	Δ Number	Number of	Number of		
Plot	of spp.	spp. gained	spp. lost	Species gained	Species lost
MUC-01	0	1	1	Piper longispicum	Gordonia fruticosa
MUC-02	-1	0	1		Cestrum lindenii
MUC-03	0	1	1	Meliosma pittieriana	Miconia aff. dodecandra
SEU-01	3	5	2	Dendropanax fendleri; Ficus tonduzii;	Nectandra laurel; Ocotea babosa
				Ocotea macropoda; Persea povedae;	
				Prunus myrtifolia	
SEU-02	-2	2	4	Beilschmiedia latifolia	Graffenrieda latifolia; Palicourea
					sp.; Persea sp.; Ternstroemia
					acrodantha
SEU-03	2	3	1	Meriania brachycera; Persea fendleri	Oreopanax bogotensis

Tabla S4. Cambio en la riqueza de especies e identidad de las especies ganadas y perdidas entre los dos censos (2016 y 2022) en parcelas permanentes de La Mucuy y San Eusebio.

Table S5. Average demographic rates of recruitment, mortality and turnover in the study plots for the period 2016-2022. Turnover rates are the average between mortality and recruitment. For calculating average annual rates, we used the correction proposed by Lewis et al. (2004).

Tabla S5. Tasas demográficas medias de reclutamiento, mortalidad y reemplazo en las parcelas de estudio para el periodo 2016-2022. Las tasas de reemplazo son la media entre mortalidad y reclutamiento. Para el cálculo de las tasas medias anuales se ha utilizado la corrección propuesta por Lewis et al. (2004).

		Mortality rate	Recruitment rate	Turnover rate
Site	Plot	(%/year)	(%/year)	(%/year)
La Mucuy	MUC-01	1.23	0.37	0.80
	MUC-02	2.58	0.38	1.48
	MUC-03	1.96	0.38	1.17
San Eusebio	SEU-01	1.93	0.23	1.08
	SEU-02	2.31	0.35	1.33
	SEU-03	1.92	0.30	1.11

Figure S1. Proportion of the number of species (A-B) and the total basal area (C-D) represented by species that belong to genera with different biogeographic origins in La Mucuy (A-C) and San Eusebio (B-D).

Figura S1. Proporción del número de especies (A-B) y del área basal total (C-D) representada por especies que pertenecen a géneros con diferentes orígenes biogeográficos en La Mucuy (A-C) y San Eusebio (B-D).

Figure S2. Main dispersal syndromes for all species registered in the montane forests of La Mucuy and San Eusebio, Cordillera de Mérida, Venezuela.

Figura S2. Principales síndromes de dispersión para todas las especies registradas en los bosques montanos de La Mucuy y San Eusebio, Cordillera de Mérida, Venezuela.

Figure S3. Cluster analysis (average linkage) based on Bray-Curtis similarity calculated from a matrix of basal area for each species (standardized and transformed using the square root) for permanent plots in La Mucuy (MUC) and San Eusebio (SEU) for the year 2016 and 2022.

Figura S3. Análisis de cluster (enlace promedio) basado en la similitud de Bray-Curtis calculada a partir de una matriz de área basal para cada especie (estandarizada y transformada usando la raíz cuadrada) para parcelas permanentes en La Mucuy (MUC) y San Eusebio (SEU) para el año 2016 y 2022.

Figure S4. Relationship between mortality and recruitment rate per plot in two montane forest sites of the Venezuelan Andes. San Eusebio plots had slightly higher turnover rates compared to La Mucuy. Note that the correlation estimates do not include the average values for each site.

Figura S4. Relación entre mortalidad y tasa de reclutamiento por parcela en dos sitios de bosque montano de los Andes venezolanos. Las parcelas de San Eusebio tuvieron tasas de reemplazo ligeramente superiores a las de La Mucuy. Nótese que las estimaciones de correlación no incluyen los valores promedio de cada sitio.

Figure S5. Distribution of aboveground carbon (AGC) (A) and stem density (B) across different size classes in 2016 and 2022 at two montane forest sites in the Venezuelan Andes.

Figura S5. Distribución del carbono sobre el suelo (AGC) (A) y la densidad de tallos (B) en diferentes clases de tamaño en 2016 y 2022 en dos sitios de bosque montano en los Andes venezolanos.

Figure S6. A) Principal component analysis (PCA) on 12 environmental variables of all plots within site. PCA axis 1 largely represents an increasing moisture supply via precipitation, while axis 2 is mostly associated with increasing temperatures. See correlations between PCA variables in Figure S5; B) A screeplot showing the proportion of the variation explained by six major axis/dimensions. PCA1+PCA2=84.9%. Tmax=maximum annual temperature; Tmin=minimum annual temperature; Tmean=mean annual temperature; Precip=mean annual precipitation; Loam=%loam in soil; %Clay=%clay in soil; Sand=%sand in soils; Nitrogen=%N in soil; Org. Carbon=%carbon in soil.

Figura S6. A) Análisis de componentes principales (PCA) sobre 12 variables ambientales de todas las parcelas dentro del sitio. El eje 1 del PCA representa en gran medida un aumento del suministro de humedad a través de las precipitaciones, mientras que el eje 2 se asocia principalmente con el aumento de las temperaturas. Véanse las correlaciones entre las variables del PCA en la Figura S5; B) Un gráfico de escala que muestra la proporción de la variación explicada por seis ejes/dimensiones principales. PCA1+PCA2=84.9%. Tmax=temperatura maxima anual; Tmin=temperatura minima anual; Tmean=temperatura promedio anual; Precip=precipitation media anual; Loam=%limos en suelo; %Clay=%arcilla en suelo; Sand=%arenas en suelo; Nitrogen=%N en suelo; Org. Carbon=%carbono orgánico en suelo.

Figure S7n Kendall's tau correlations between environmental variables grouped in three axes from a principal component analysis and seven structural and dynamic-related variables using six plots from two montane forests in the Venezuelan Andes. Red boxes highlight significant relationships. BA_2022=basal area in 2022; AGC_2022=aboveground carbon in 2022; AGWP=above ground woody productivity; T_mort=%mortality rate; T_rec=%recruitment rate; T_turn=%turnover rate; Richness=number of tree species; PCA1, PCA2, PCA3=first three axes from the principal component analysis shown in Figure S6.

Figura S7. Correlaciones tau de Kendall entre variables ambientales agrupadas en tres ejes a partir de un análisis de componentes principales y siete variables estructurales y relacionadas con la dinámica utilizando seis parcelas de dos bosques montanos en los Andes venezolanos. Los recuadros rojos destacan las correlaciones significativas. BA_2022=area basal 2022; AGC_2022=carbon aéreo in 2022; AGWP=productividad maderable anual; T_mort=%tasa de mortalidad; T_rec=%tasa de reclutamiento; T_turn=%tasa de recambio; Richness=número de especies; PCA1, PCA2, PCA3=tres primeros ejes del análisis de componentes principales de la Figura S6.

