Conteo de marcas de yemas para estimar la edad en Polylepis tarapacana: Una técnica potencial

Autores/as

  • Victoria L. López Laboratorio de Investigaciones en Maderas, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. CCT La Plata (CONICET-La Plata).
  • Gerónimo Crisci Laboratorio de Investigaciones en Maderas, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata.
  • Griet A. E. Cuyckens Instituto de Ecorregiones Andinas, Universidad Nacional de Jujuy (UNJU). Centro de Estudios Territoriales Ambientales y Sociales (UNJU).
  • Juan M. Cellini Laboratorio de Investigaciones en Maderas, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata.

DOI:

https://doi.org/10.25260/EA.21.31.1.0.1145

Palabras clave:

cicatrices de yemas, Jujuy, Altos Andes, crecimiento determinado

Resumen

En las especies forestales que presentan un crecimiento determinado, las yemas generan marcas que se usan para estimar las edades a lo largo de brotes apicales o de ramas, mediante el conteo de entrenudos. Para estimar la edad a lo largo de las ramas en especies amenazadas y de crecimiento lento, como es el caso de Polylepis tarapacana Phil., es crucial contar con técnicas no destructivas que eviten colectar ramas, renovales o ejemplares completos. Por lo tanto, el objetivo de este trabajo fue evaluar la potencialidad de la técnica de estimación de la edad que utiliza las marcas externas a lo largo de la rama en P. tarapacana. Se trabajó con 13 ramas apicales colectadas en 13 bosques de la localidad de Lagunillas del Farallón, Dto. de Rinconada. En cada una de las ramas se realizó el conteo de marcas de brotes utilizando dos métodos: a) a lo largo de los 20 cm de longitud de la rama principal y b) en un brote lateral de la rama principal, se contaron tres marcas a lo largo del brote. Se analizó si el conteo de marcas se ajusta a la edad con un modelo linear generalizado mixto (Glmm), incluyendo el factor aleatorio árbol (n=26). Los resultados indican que existe potencial para aplicar esta técnica, pero para generar un modelo confiable sería necesario colectar un mayor número de muestras en futuras investigaciones.

Biografía del autor/a

Victoria L. López, Laboratorio de Investigaciones en Maderas, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. CCT La Plata (CONICET-La Plata).

La Plata, Buenos Aires, Argentina

Citas

Assmann, E. 1970. The principles of forest yield study: Studies in the organic production, structure, increment, and yield of forest stands. Pergamon Press, Oxford, England.

Bates, D., M. Maechler, B. Bolker, and S. Walker. 2015. Fitting Linear Mixed-Effects Models Using lme4. Journal of Statistical Software 67(1):1-48. https://doi.org/10.18637/jss.v067.i01.

Braun, G. 1997. The use of digital methods in assessing forest patterns in an Andean environment: the Polylepis example. Mountain Research and Development 17:253-262. https://doi.org/10.2307/3673852.

Cozzi, E. A., and F. Moschione. 2011. Guía de flora y fauna en la región de Mina Pirquitas. Mina Pirquitas inc. Jujuy. Argentina.

Crone, E. E., E. J. B. McIntire, and J. Brodie. 2011. What defines mast seeding? Spatio-temporal patterns of cone production by whitebark pine. Journal of Ecology 99:438-444. https://doi.org/10.1111/j.1365-2745.2010.01790.x.

Cuevas, J. G. 2002. Episodic regeneration at the Nothofagus pumilio alpine timberline in Tierra del Fuego, Chile. Journal of Ecology 90:52-60. https://doi.org/10.1046/j.0022-0477.2001.00636.x.

Cuyckens, G. A. E., D. A. Christie, A. I. Domic, L. R. Malizia, and D. Renison. 2016. Climate change and the distribution and conservation of the world's highest elevation woodlands in the South American Altiplano. Global and Planetary Change 137:79-87. https://doi.org/10.1016/j.gloplacha.2015.12.010.

Gea-Izquierdo, G., G. Martínez Pastur, J. M. Cellini, and M. V. Lencinas. 2004. Forty years of silvicultural management in southern Nothofagus pumilio primary forests. Forest Ecology and Management 201:335-347. https://doi.org/10.1016/j.foreco.2004.07.015.

Girard, F., M. Vennetier, F. Guibal, C. Corona, S. Ouarmim, and A. Herrero. 2011. Pinus halepensis Mill. crown development and fruiting declined with repeated drought in Mediterranean France. European Journal of Forest Research 131:919-931. https://doi.org/10.1007/s10342-011-0565-6.

Hallé, F., R. A. A. Oldeman, and P. B. Tomlinson. 1978. Tropical Trees and Forests. An Architectural Analysis. Springer-Verlag, Berlin, Germany. https://doi.org/10.1007/978-3-642-81190-6.

Hankin L. E., P. E. Higuera, K. T. Davis, and S. Z. Dobrowski. 2018. Accuracy of node and bud-scar counts for aging two dominant conifers in western North America. Forest Ecology and Management 427:365-371. https://doi.org/10.1016/j.foreco.2018.06.001.

Hett, J. M., and O. L. Loucks. 1976. Age structure models of balsam fir and eastern hemlock. Journal of Ecology 64:1029-1044. https://doi.org/10.2307/2258822.

Hoch, G., and C. Körner. 2005. Growth, demography and carbon relations of Polylepis trees at the world's highest treeline. Functional Ecology 19:941-951. https://doi.org/10.1111/j.1365-2435.2005.01040.x.

IUCN. Red List of Threatened Species. Version 2020. URL: https://www.iucnredlist.org.

Kajimoto, T., H. Onodera, S. Ikeda, H. Daimaru, and T. Seki. 1998. Seedling establishment of subalpine stone pine (Pinus pumila) by nutcracker (Nucifraga) seed dispersal on Mt. Yumori, Northern Japan. Arctic and Alpine Research 30:408-417. https://doi.org/10.2307/1552014.

Kessler, M. 1995. Present and potential distribution of Polylepis (Rosaceae) forests in Bolivia. Pp. 281-294 in Proceedings of the neotropical montane forest biodiversity and conservation symposium. The New York Botanical Garden. New York. USA.

Kessler, M. 2006. Bosques de Polylepis. Pp. 110-120 in M. Moraes, B. Øllgaard, L. P. Kvist, F. Borchsenius and H. Balslev (eds.). Botánica Económica de los Andes Centrales. Universidad Mayor de San Andrés, La Paz, Bolivia.

Kozlowski, T. T., and S. G. Pallardy. 1997. Physiology of woody plants. Second edition. Academic, California, USA.

López, V. L., M. Pérez Flores, S. E. Sharry, and J. M. Cellini. 2020. Estructura vertical y horizontal en dos bosques de Polylepis tarapacana con diferentes situaciones ambientales. Historia Natural 10:165-173.

Martínez Pastur, G., M. V. Lencinas, P. Peri, and M. Arena. 2007. Photosynthetic plasticity of Nothofagus pumilio seedlings to light intensity and soil moisture. Forest Ecology and Management 243:274-282. https://doi.org/10.1016/j.foreco.2007.03.034.

Mendoza, E. A., and J. A. González. 2011. Las ecorregiones del Noroeste Argentino basadas en la clasificación climática de Köppen. Serie Conservación de la Naturaleza 19:3-41.

Miehe, G., S. Miehe, K. Koch, and M. Will. 2003. Sacred forests in Tibet using geographical information systems for forest rehabilitation. Mountain Research and Development 23:324-328. https://doi.org/10.1659/0276-4741(2003)023[0324:SFIT]2.0.CO;2.

Mina Pirquitas. 2004. Registro de datos meteorológicos del área de influencia de la Mina Pirquitas Inc. SSR Mining, Jujuy, Argentina. Pp. 51.

Morales, M. S., R. Villalba, H. R. Grau, and L. Paolini. 2004. Rainfall controlled tree growth in high elevation subtropical treelines. Ecological Society of America 85:3080-3089. https://doi.org/10.1890/04-0139.

Morales, M. S., D. A. Christie, R. Villalba, J. Argollo, J. Pacajes, J. S. Silva, C. A. Álvarez, J. C. Llancabure, and C. C. Soliz Gamboa. 2012. Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings. Climate of the Past 8:653-666. https://doi.org/10.5194/cp-8-653-2012.

Mutke, S., R. Sievänen, E. Nikinmaa, J. Perttunen, and L. Gil. 2005. Crown architecture of grafted Stone pine (Pinus pinea L.): shoot growth and bud differentiation. Trees 19:15-25.

Piña, P. Z. 2015. Caracterización de hábitat y distribución espacial de formaciones boscosas de queñoa (Polylepis tarapacana) en los territorios del Parque Nacional Salar del Huasco, región de Tarapacá. Biodiversidata 3:12-20.

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org.

Renison, D., I. Hensen, R. Suárez, A. M. Cingolani, P. Marcora, and M. A. Giorgis. 2010. Soil conservation in Polylepis mountain forests of Central Argentina: Is livestock reducing our natural capital? Austral Ecology 35:435-443. https://doi.org/10.1111/j.1442-9993.2009.02055.x.

Renison, D., G. A. E. Cuyckens, S. Pacheco, G. F. Guzmán, H. R. Grau, P. Marcora, G. Robledo, A. M. Cingolani, J. Dominguez, M. Landi, L. Bellis, and I. Hensen. 2013. Distribución y estado de conservación de las poblaciones de árboles y arbustos del género Polylepis (Rosaceae) en las montañas de Argentina. Ecología Austral 23:27-36. https://doi.org/10.25260/EA.13.23.1.0.1189.

Ríos, S. 1998. Estudio de la distribución y caracterización ecológica de las poblaciones locales de queñoa de altura (Polylepis tarapacana Phil.) en el sector de la provincia de Iquique. Tarapacá. Chile. Memoria Ing. Forestal. Facultad de Ciencias Agrarias y Forestales, Universidad de Chile. Santiago de Chile. Chile. Pp. 61

Saavedra, J. 2013. Caracterización de la estructura poblacional de Polylepis tarapacana en sector cerro Chiguana, cuenca del salar de Surire, para establecer los lineamientos de un programa de restauración ecológica. Tesis de Maestría. Universidad de Tarapacá. Arica. Chile. Pp. 76.

Soler, R., M. V. Lencinas, G. Bustamante, and G. Martínez Pastur. 2018. Atributos de la regeneración natural de ñire (Nothofagus antarctica) en Tierra del Fuego: beneficios y perjuicios que genera el uso silvopastoril. Ecosistemas 27(3):41-47.

Thabeet, A., M. Vennetier, C. Gadbin-Henry, N. Denelle, M. Roux, Y. Caraglio, and B. Vilá. 2009. Response of Pinus sylvestris L. to recent climatic events in the French Mediterranean region. Trees 23:843-853. https://doi.org/10.1007/s00468-009-0326-z.

Toivonen, J. M., V. Horna, M. Kessler, K. Ruokolainen, and D. Hertel. 2014. Interspecific variation in functional traits in relation to species climatic niche optima in Andean Polylepis (Rosaceae) tree species: evidence for climatic adaptations. Functional Plant Biology 41:301-312. https://doi.org/10.1071/FP13210.

Urza, A. K., and J. S. Sibold. 2013. Nondestructive Aging of Postfire Seedlings for Four Conifer Species in Northwestern Montana. Western Journal of Applied Forestry 28(1):22-29. https://doi.org/10.5849/wjaf.11-014.

Vennetier, M., F. Girard, O. Taugourdeau, M. Cailleret, Y. Caraglio, S. A. Sabatier, S. Ouarmim, D. Cody, and A. Thabeet. 2013. Climate change impact on tree architectural development and leaf area. Pp. 103-126 in Singh Bharat Raj (ed.). Climate change - realities, impacts over ice cap, sea level and risks. InTech. Rijeka, Croacia. https://doi.org/10.5772/51510.

Wawrzyk, A. C., and B. L. Vilá. 2013. Dinámica del pastoreo en dos comunidades (Lagunillas del Farallón y Suripujio) de la puna de Jujuy, Argentina. Chungara: Revista de Antropología Chilena 45(2):349-362. https://doi.org/10.4067/S0717-73562013000200010.

Williams, C. E., and W. C. Johnson. 1990. Age structure and the maintenance of Pinus pungens in pine-oak forests of southwestern Virginia. American Midland Naturalist 124:130-141. https://doi.org/10.2307/2426086.

Zhang, L., T. Luo, X. Liu, and G. Kong. 2010. Altitudinal variations in seedling and sapling density and age structure of timberline tree species in the Sergyemla Mountains, southeast Tibet. Acta Ecologica Sinica 30(2):76-80. https://doi.org/10.1016/j.chnaes.2010.03.005.

Descargas

Archivos adicionales

Publicado

2021-03-05

Cómo citar

López, V. L., Crisci, G., Cuyckens, G. A. E., & Cellini, J. M. (2021). Conteo de marcas de yemas para estimar la edad en Polylepis tarapacana: Una técnica potencial. Ecología Austral, 31(1), 182–189. https://doi.org/10.25260/EA.21.31.1.0.1145