Bases para estudiar las alteraciones del régimen hidrológico y su importancia ecológica en la Argentina

Autores/as

  • Leandro Rodrigues Capítulo Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (CONICET)
  • Luis Espínola Instituto Nacional de Limnología, Universidad Nacional del Litoral (CONICET)
  • Federico Yoya Instituto Nacional de Limnología, Universidad Nacional del Litoral (CONICET)
  • Fernanda Gaspari Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata
  • Gabriela Mazzucchelli Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata
  • Eduardo Kruse Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (CONICET)

DOI:

https://doi.org/10.25260/EA.22.32.1.1.1219

Palabras clave:

ecosistemas acuáticos, ecorregiones, series temporales hidrológicas, ecohidrología

Resumen

En este trabajo se plantean las bases metodológicas para evaluar los cambios antrópicos que afectan las condiciones ecohidrológicas a una escala regional en la Argentina. La diversidad climática, morfológica y geológica del territorio se manifiesta en diferentes ecorregiones y en una diversidad elevada de ambientes lóticos y lénticos ligados a los sistemas hídricos. Los caudales diarios, los niveles freáticos, las superficies anegadas o las alturas hidrométricas tienen distinta influencia según la ecorregión considerada en cada sistema hídrico. La información hidrológica histórica con continuidad y los registros con una extensión suficiente para analizar las alteraciones del régimen hidrológico son relativamente escasos y se restringen a 163 estaciones de medición. Se plantea aplicar un modelo conceptual para analizar las alteraciones hidrológicas, seguido del estudio de las variaciones temporales en las condiciones hidrológicas y morfológicas previas a la actividad antrópica (preimpacto), para luego considerar la nueva situación hidrológica-ecológica (post-impacto), a partir de las que se deberán adoptar las medidas apropiadas para mitigar los daños ecológicos cuando se produzcan. Aunque existen diversas metodologías para realizar dicho análisis, considerando la disponibilidad de datos actuales en la Argentina, se propone emplear el marco metodológico fundamentado en el concepto ELOHA (Ecological Limit of Hydrological Alteration) para analizar las alteraciones hidrológicas. Si bien el método holístico brinda mejores resultados y menor incertidumbre, considerando la heterogeneidad, la escasez y la falta de continuidad de registros hidrológicos a nivel general, la técnica propuesta podría resultar una buena aproximación a escala regional. Se concluye que será necesario adaptar las bases metodológicas y las técnicas de análisis a tal condición para crear una base de datos para planificar estratégicamente los recursos hídricos en la Argentina.

Citas

Abell, R., M. L. Thieme, C. Revenga, M. Bryer, M. Kottelat, N. Bogutskaya, B. Coad, N. Mandrak, S. C. Balderas, W. Bussing, M. L. J. Stiassny, P. Skelton, G. R. Allen, P. Unmack, A. Ng, R. Naseka, N. Sindorf, J. Robertson, E. Armijo, J. V. Higgins, T. J. Heibel, E. Wikramanayake, D. Olson, H. L. López, R. E. Reis, J. G. Lundberg, M. H. S. Pérez, and P. Petry. 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. BioScience 58:403-414. https://doi.org/10.1641/B580507.

Abou Rafee, S. A., C. B. Uvo, J. A. Martins, L. M. Domingues, A. P. Rudke, T. Fujita, and E. D. Freitas. 2019. Large-scale hydrological modelling of the Upper Paraná River Basin. Water 11(5):882. https://doi.org/10.3390/w11050882.

Abrial, E., R. E. Lorenzón, A. P. Rabuffetti, M. C. Blettler, and L. A. Espínola. 2021. Hydroecological implication of long-term flow variations in the middle Paraná river floodplain. Journal of Hydrology 603:126957. https://doi.org/10.1016/j.jhydrol.2021.126957.

Aguilera, G., and M. Pouilly. 2012. Caudal ecológico: definiciones, metodologías y adaptación a la región andina. Acta Zoológica Lilloana 15-30.

Angarita, H., J. Delgado, M. I. Escobar-Arias, and T. Walschburger. 2013. Escenarios de alteración regional del régimen hidrológico en la cuenca Magdalena-Cauca por intensificación de la demanda para hidroenergía. Pp. 5303-5315 en Memorias del Congreso Internacional AGUA, Universidad del Valle, Cali, Colombia (Vol. 5).

Antico, A., R. O. Aguiar, and M. L. Amsler. 2018. Hydrometric data rescue in the Paraná River Basin. Water Resources Research 54(2):1368-1381. https://doi.org/10.1002/2017WR020897.

Antonio, C., G. G. Ovando, and G. J. Díaz. 2021. ENSO influence on corn and soybean yields as a base of an early warning system for agriculture in Córdoba, Argentina. European Journal of Agronomy 129:126340. https://doi.org/10.1016/j.eja.2021.126340.

Arrington, D. A., K. O. Winemiller, and C. A. Layman. 2005. Community assembly at the patch scale in a species-rich tropical river. Oecologia 144:157-167. https://doi.org/10.1007/s00442-005-0014-7.

Arthington, A. H., J. L. Rall, M. J. Kennard, and B. J. Pusey. 2003. Environmental flow requirements of fish in Lesotho rivers using the DRIFT methodology. River Research and Applications 19(5‐6):641-666. https://doi.org/10.1002/rra.728.

Barrera, D., and A. Maggi. 2018. Variabilidad de la precipitación en el altiplano argentino. Incidencia de la transición climática 1976/1977 y del fenómeno el niño-oscilación del sur en el noroeste argentino. Revista Meteorológica 43(1):41-71.

Basílico, G. O., L. D. Cabo, and A. Faggi. 2011. Consecuencias del cambio climático global sobre un sistema acuático pampeano (arroyo La Choza; Buenos Aires, Argentina). In III Congreso Internacional sobre Cambio Climático y Desarrollo Sustentable (La Plata, 2011).

Bayley, P. B. 1995. Understanding large river floodplain ecosystems. Bioscience 45:153-158. https://doi.org/10.2307/1312554.

Bejarano, M. D., Á. Sordo-Ward, C. Alonso, and C. Nilsson. 2017. Characterizing effects of hydropower plants on sub-daily flow regimes. Journal of Hydrology 550:186-200. https://doi.org/10.1016/j.jhydrol.2017.04.023.

Belletti, B., M. Rinaldi, A. D. Buijse, A. M. Gurnell, and E. Mosselman. 2015. A review of assessment methods for river hydromorphology. Environmental Earth Sciences 73(5):2079-2100. https://doi.org/10.1007/s12665-014-3558-1.

Belmar, O., N. Vila-Martínez, C. Ibáñez, and N. Caiola. 2018. Linking fish-based biological indicators with hydrological dynamics in a Mediterranean river: Relevance for environmental flow regimes. Ecological Indicators 95:492-501. https://doi.org/10.1016/j.ecolind.2018.06.073.

Benetti, A., E. Lanna, and M. Cobalchini. 2003. Metodologías para determinação de vazoes ecológicas em ríos. Revista Brasilera de Recursos Hídricos 8:149-160. https://doi.org/10.21168/rbrh.v8n2.p149-160.

Bohn, V. Y., A. L. Delgado, M. Piccolo, and G. M. Perillo. 2016. Assessment of climate variability and land use effect on shallow lakes in temperate plains of Argentina. Environmental Earth Sciences 75(9):1-15. https://doi.org/10.1007/s12665-016-5569-6.

Bonetto, A. A. 1975. Hydrologic Regime of the Parana River and Its Influence on Ecosystems (Vol. 10, Pp. 175). Taylor and Francis.

Boninsegna, J. A. 2013. Impacto del cambio climático en los oasis del oeste argentino.

Boninsegna, J., and A. Llop. 2015. Impactos y vulnerabilidad al cambio climático de los principales ríos de Mendoza y San Juan a partir de la evolución de los glaciares cordilleranos: la economía del cambio climático en la Argentina.

Boulanger, J. P., J. Leloup, O. Penalba, M. Rusticucci, F. Lafon, and W. Vargas 2005. Observed precipitation in the Paraná-Plata hydrological basin: long-term trends, extreme conditions and ENSO teleconnections. Climate Dynamics 24(4):393-413. https://doi.org/10.1007/s12665-016-5569-6.

Bovee, K. D. 1995. A comprehensive overview of the instream flow incremental methodology. National Biological Service, Fort Collins, CO.

Bower, L. M., B. K. Peoples, M. C. Eddy, and M. C. Scott. 2022. Quantifying flow-ecology relationships across flow regime class and ecoregions in South Carolina. Science of the Total Environment 802:149721. https://doi.org/10.1016/j.scitotenv.2021.149721.

Bragg, O. M., A. R. Black, R. W. Duck, and J. S. Rowan. 2005. Approaching the physical-biological interface in rivers: a review of methods for ecological evaluation of flow regimes. Progress in Physical Geography 29(4):506-531. https://doi.org/10.1191/0309133305pp460ra.

Brizga, S. O., A. H. Arthington, S. C. Choy, M. J. Kennar, S. J. Mackay, B. J. Pusey, and G. L. Werren. 2002. Benchmarking, a ‘top-down’methodology for assessing environmental flows in Australian rivers. In Proceedings of the International Conference on Environmental Flows for River Systems, Southern Waters, University of Cape Town, South Africa.

Brouziyne, Y., S. Belaqziz, L. Benaabidate, A. Aboubdillah, A. El Bilali, A. Elbeltagi, and A. Chehbouni. 2022. Modeling long term response of environmental flow attributes to future climate change in a North African watershed (Bouregreg watershed, Morocco). Ecohydrology and Hydrobiology 22(1):155-167. https://doi.org/10.1191/0309133305pp460ra.

Buchanan, C., H. L. Moltz, H. C. Haywood, J. B. Palmer, and A. N. Griggs. 2013. A test of the ecological limits of hydrologic alteration (ELOHA) method for determining environmental flows in the Potomac River basin, USA. Freshwater Biology 58(12):2632-2647. https://doi.org/10.1111/fwb.12240.

Burkart, R., N. O. Bárbaro, R. O. Sánchez, and D. A. Gómez. 1999. Eco-regiones de la Argentina. Administración de Parques Nacionales. Pp. 42.

Carlson, R. E. 1977. A trophic state index for lakes 1. Limnology and Oceanography 22(2):361-369. https://doi.org/10.4319/lo.1977.22.2.0361.

Castello, L., and M. N. Macedo. 2016. Large-scale degradation of Amazonian freshwater ecosystems. Glob Change Biol 22:990-1007. https://doi.org/10.1111/gcb.13173.

Compagnucci, R. H., and E. A. Agosta. 2008. La precipitación de verano en el centro-oeste de Argentina y los fenómenos interanual El Niño/Oscilación Sur (ENOS) e interdecádico "tipo" ENOS. Geoacta 33:97-103.

Crutzen, P. J. 2002. Geology of mankind. Nature 415:23. https://doi.org/10.1038/415023a.

Crutzen, P. J., and E. F. Stoermer. 2000. The Anthropocene. IGBP Global Change Newsl 41:17-18.

de la Casa, A. C., and G. G. Ovando .2006. Influencia de episodios El Niño-Oscilación Sur (ENOS) sobre la precipitación y el rendimiento de maíz en la provincia de Córdoba, Argentina. Agricultura Técnica 66(1):80-89. https://doi.org/10.4067/S0365-28072006000100009.

Doffo, N. C., S. Degiovanni, K. Echevarría, A. Jimena, and M. Santinelli. 2021. Alteraciones morfohidrológicas en el tramo inferior del río Cuarto, Córdoba (Argentina), producidas por obras de control de inundaciones. Revista de la Asociación Geológica Argentina 78(2):231-245.

Domínguez, E., A. Giorgi, and N. Gómez. 2020. La bioindicación en el monitoreo y evaluación de los sistemas fluviales de la Argentina. Eudeba, Buenos Aires.

Espínola, L. A., A. P. Rabuffetti, E. Abrial, M. L. Amsler, M. C. M. Blettler, A. P. Paira, N. Simoes, and L. N. Santos. 2016. Response of fish assemblage structure to changing flood and flow pulses in a large subtropical river. Mar Freshwater Res 68:319-330. https://doi.org/10.1071/MF15141.

Espínola, L. A., M. L. Amsler, A. R. Paira, E. E. Drago, M. Blettler, and A. A. Agostinho. 2014. Effects of decadal changes in the hydrological regime of the middle reach of the Paraná River (Argentina) on fish densities. Environmental Biology of Fishes 97(7):757-771. https://doi.org/10.1007/s10641-013-0177-8.

Evans, J. W., and R. H. England. 1995. A recommended method to protect instream flows in Georgia. Social Circle, Georgia: Georgia Department of Natural Resources, Wildlife Resources Division.

Fantin-Cruz, I., O. Pedrollo, P. Girard, P. Zeilhofer, and S. K. Hamilton. 2015. Effects of a diversion hydropower facility on the hydrological regime of the Correntes River, a tributary to the Pantanal floodplain, Brazil. Journal of Hydrology 531:810-820. https://doi.org/10.1016/j.jhydrol.2015.10.045.

Fernández, J. A., C. Martínez, and F. Magdaleno. 2012. Application of indicators of hydrologic alterations in the designation of heavily modified water bodies in Spain. Environmental Science and Policy 16:31-43. https://doi.org/10.1016/j.envsci.2011.10.004.

Ferreira, K., T. M. Lopes, I. D. P. Affonso, A. A. Agostinho, and L. C. Gomes. 2020. Dam reverse flow events influence limnological variables and fish assemblages of a downstream tributary in a Neotropical floodplain. River Research and Applications 36(2):305-313. https://doi.org/10.1002/rra.3584.

Finessi, F. G., and D. Groch. 2018. Estudio hidrológico de la Cuenca Alta del Río Neuquén. Bachelor's thesis, Universidad Nacional del Comahue. Facultad de Humanidades.

Fisher, B., R., K., Turner, and P. Morling. 2009. Defining and classifying ecosystem services for decision making. Ecol Econ 68:643-653. https://doi.org/10.1016/j.ecolecon.2008.09.014.

Gao, Y., R. M. Vogel, C. N. Kroll, N. L. Poff, and J. D. Olden. 2009. Development of representative indicators of hydrologic alteration. Journal of Hydrology 374(1-2):136-147. https://doi.org/10.1016/j.jhydrol.2009.06.009.

Ge, J., W. Peng, W. Huang, X. Qu, and S. K. Singh. 2018. Quantitative assessment of flow regime alteration using a revised range of variability methods. Water 10(5):597. https://doi.org/10.3390/w10050597.

Gebremicael, T. G., Y. A. Mohamed, and P. Van der Zaag. 2019. Attributing the hydrological impact of different land use types and their long-term dynamics through combining parsimonious hydrological modelling, alteration analysis and PLSR analysis. Science of the Total Environment 660:1155-1167. https://doi.org/10.1016/j.scitotenv.2019.01.085.

Grimson, R., N. S. Morandeira, M. P. Gayol, and P. Kandus. 2019. Freshwater marsh classification in the Lower Paraná River floodplain: an object-based approach on multitemporal X-band COSMO-SkyMed data. Journal of Applied Remote Sensing 13(1):014531. https://doi.org/10.1117/1.JRS.13.014531.

Hamidifar, H., F. Akbari, and P. M. Rowiński. 2022. Assessment of Environmental Water Requirement Allocation in Anthropogenic Rivers with a Hydropower Dam Using Hydrologically Based Methods—Case Study. Water 14(6):893. https://doi.org/10.3390/w14060893.

Hiddink, J. G., B. MacKenzie, and A. Rijnsdorp. 2008. Importance of fish biodiversity for the management of fisheries and ecosystems. Fish Res 90:6-8. https://doi.org/10.3390/w14060893.

Jobbágy, E. G., M. Pascual, M. P. Barral, M. Poca, L. G. Silva, J. Oddi, and P. E. Villagra. 2021. Representación espacial de la oferta y la demanda de los servicios ecosistémicos vinculados al agua. Ecología Austral 32(1bis):918-933. https://doi.org/10.25260/EA.22.32.1.1.1213.

Junk, W. J., P. B. Bayley, and R. E. Sparks. 1989. The flood pulse concept in river-floodplain systems. Can. J Fish Aquat SCI. Special Publication 106:110-127.

Kendy, E., J. S. Sanderson, J. D. Olden, C. D. Apse, M. M. DePhilip, J. A. Haney, and J. K. H. Zimmerman. 2009. Applications of the ecological limits of hydrologic alteration (ELOHA) in the United States. In International Conference on Implementing Environmental Water Allocations. Pp. 23-26.

Kiesel, J., A. Gericke, H. Rathjens, A. Wetzig, K. Kakouei, S. C. Jähnig, and N. Fohrer. 2019. Climate change impacts on ecologically relevant hydrological indicators in three catchments in three European ecoregions. Ecological Engineering 127:404-416. https://doi.org/10.1016/j.ecoleng.2018.12.019.

King, J. M., R. E. Tharme, and M. S. De Villiers. 2008. Environmental Flow Assessments for Rivers: Manual for the Building Block Methodology, WRC Report No. TT354/08. Water Research Commission. Pretoria. Sudáfrica.

Kleiner, J., E. Passero, R. Burgholzer, J. Rapp, and D. Scott. 2020. A New Instream Flow Framework for Rapid Generation and Optimization of Flow-Ecology Relations. JAWRA Journal of the American Water Resources Association 56(6):949-966. https://doi.org/10.1111/1752-1688.12876.

Kroll, C. N., K. E. Croteau, and R. M. Vogel. 2015. Hypothesis tests for hydrologic alteration. Journal of Hydrology 530:117-126. https://doi.org/10.1016/j.jhydrol.2015.09.057.

Kuriqi, A., A. N. Pinheiro, A. Sordo-Ward, and L. Garrote. 2019. Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants. Applied Energy 256:113980. https://doi.org/10.1016/j.apenergy.2019.113980.

Leblanc, M. J., G. Favreau, S. Massuel, S. O. Tweed, M. Loireau, and B. Cappelaere. 2008. Land clearance and hydrological change in the Sahel: SW Niger. Global and Planetary Change 61(3-4):135-150. https://doi.org/10.1016/j.gloplacha.2007.08.011.

Lenzi, L. M. 2017. Evaluación del impacto del cambio climático en los procesos hidrológicos de la Cuenca del Arroyo Feliciano, Entre Ríos, Argentina.

Lestelle, L. C., and L. E. Mobrand. 1996. Applied Ecosystem Analysis - a Primer: EDT the Ecosystem Diagnosis and Treatment Method (No. DOE/BP-33243-2). Mobrand Biometrics, Inc. https://doi.org/10.2172/658270.

Lovino, M. A., O. V. Müller, G. V. Müller, L. C. Sgroi, and W. E. Baethgen. 2018. Interannual-to-multidecadal hydroclimate variability and its sectoral impacts in northeastern Argentina. Hydrology and Earth System Sciences 22(6):3155-3174. https://doi.org/10.5194/hess-22-3155-2018.

Lu, W., H. Lei, D. Yang, L. Tang, and Q. Miao. 2018. Quantifying the impacts of small dam construction on hydrological alterations in the Jiulong River basin of Southeast China. Journal of Hydrology 567:382-392. https://doi.org/10.1016/j.jhydrol.2018.10.034.

Martin, D. M., J. W. Labadie, and N. L. Poff. 2015. Incorporating social preferences into the ecological limits of hydrologic alteration (ELOHA): a case study in the Yampa‐White River basin, Colorado. Freshwater Biology 60(9):1890-1900. https://doi.org/10.1111/fwb.12619.

Martínez Duarte, J. A. 2019. Esquemas de compensación por servicios ecosistémicos en la Argentina. Revista de Ciencia y Tecnología 31:1-10.

McManamay, R. A., D. J. Orth, C. A. Dolloff, and D. C. Mathew. 2013. Application of the ELOHA framework to regulated rivers in the Upper Tennessee River Basin: a case study. Environmental Management 51(6):1210-1235. https://doi.org/10.1007/s00267-013-0055-3.

McMillan, H. 2020. Linking hydrologic signatures to hydrologic processes: A review. Hydrological Processes 34(6):1393-1409. https://doi.org/10.1002/hyp.13632.

McMillan, H. K. 2021. A review of hydrologic signatures and their applications. Wiley Interdisciplinary Reviews: Water 8(1):e1499. https://doi.org/10.1002/wat2.1499.

Molfino, S., and M. R. Acuña. 2021. Navegando el Paraná. Apuntes de dos investigadores desde la línea de flotación. BORDES 22:117-125.

Monico González, V. 2022. Efecto del régimen de caudales ecológicos sobre los indicadores de alteración hidrológica. Caso de estudio, cuenca del río Órbigo (Demarcación Hidrográfica del Duero).

Montroull, N. B., R. I. Saurral, I. A. Camilloni, A. Sörensson, C. Menéndez, and R. Ruscica. 2013. Escenarios hidrológicos futuros en la región de los esteros del Iberá en el contexto del cambio climático. Meteorologica 38(1):3-19.

Morello, J., S. D. Matteucci, A. F. Rodríguez, and M. E. Silva. 2012. Ecorregiones y Complejos Ecosistémicos de Argentina. Orientación Gráfica Editora. Pp. 719.

Neiff, J. J. 1990. Ideas para la interpretación ecológica del Paraná. Interciencia 15:424- 441.

Norte, F., S. Simonelli, and N. Heredia. 1998. Impacto del fenómeno ENOS en el régimen hidrometeorológico de Mendoza, Argentina. Bulletin de l'Institut Français d'Études Andines 27(3).

Nosetto, M. D., E. G. Jobbágy, A. B. Brizuela, and R. B. Jackson. 2012. The hydrologic consequences of land cover change in central Argentina. Agriculture, Ecosystems and Environment 154:2-11. https://doi.org/10.1016/j.agee.2011.01.008.

Olden, J. D., and N. L. Poff. 2003. Redundancy and the choice of hydrologic indices for characterizing streamflow regimes. River Research and Applications 19(2):101-121.

Olden, J. D., M. J. Kennard, and B. J. Pusey. 2012. A framework for hydrologic classification with a review of methodologies and applications in ecohydrology. Ecohydrology 5(4):503-518. https://doi.org/10.1002/eco.251.

Paredes del Puerto, J. M., I. D. García, T. Maiztegui, A. H. Paracampo, L. Rodrigues Capítulo, J. R. García de Souza, and D. C. Colautti. 2022. Impacts of land use and hydrological alterations on water quality and fish assemblage structure in headwater Pampean streams (Argentina). Aquatic Sciences 84(1):1-15. https://doi.org/10.1007/s00027-021-00836-1.

Pasquini, A. I., and P. J. Depetris. 2011. Southern patagonia’s Perito Moreno glacier, Lake Argentino, and Santa Cruz River hydrological system: an overview. Journal of Hydrology 405(1-2):48-56. https://doi.org/10.1016/j.jhydrol.2011.05.009.

Pedron, I. T. 2012. Anthropogenic effects and climate change on mesoscale: deforestation and population and trends in humidity and temperatures. En World Congress on Water, Climate and Energy 2012. Pp. 3. URL: tinyurl.com/yxbhhtnu.

Peres, D. J., and A. Cancelliere. 2016. Environmental flow assessment based on different metrics of hydrological alteration. Water Resources Management 30(15):5799-5817. https://doi.org/10.1007/s11269-016-1394-7.

Poff, N. L., and J. H. Matthews. 2013. Environmental flows in the Anthropocene: past progress and future prospects. Curr Opin Env Sust 5:667-675. https://doi.org/10.1016/j.cosust.2013.11.006.

Poff, N. L., and J. D. Allan. 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76(2):606-627. https://doi.org/10.2307/1941217.

Poff, N. L., B. D. Richter, A. H. Arthington, S. E. Bunn, R. J. Naiman, E. Kendy, M. Acreman, C. Apse, B. P. Bledsoe, M. C. Freeman, J. Henriksen, R. B. Jacobson, J. G. Kennen, D. M. Merritt, J. H. O’Keeffe, J. D. Olden, K. Rogers, R. E. Tharme, and A. Warner. 2010. The ecological limits of hydrologic alteration (ELOHA): a new framework for developing regional environmental flow standards. Freshw Biol 55:147-170. https://doi.org/10.1111/j.1365-2427.2009.02204.x.

Puig, A., H. Olguin Salinas, and A. S. Castro. 2016. Alteraciones del régimen hidrológico fluvial y consideraciones sobre caudales ambientales.

Quevedo, J. M., G. Gomes, A. M. Lisboa, and M. M. Werlang. 2018. Flow Forecasting System Downstream the Itaipú Dam. Pp. 423-431 en Advances in Hydroinformatics. Springer, Singapore. https://doi.org/10.1007/978-981-10-7218-5_30.

Quirós, R. 1990. The Paraná River basin development and the changes in the lower basin fisheries. Interciencia 15:442-451.

REM.AQUA. 2020. Red de Evaluación y Monitoreo de Ecosistemas Acuáticos. MAyDS-CONICET, La Plata, Argentina.

Richter, B. D., J. V. Baumgartner, J. Powell, and D. P. Braun. 1996. A method for assessing hydrologic alteration within ecosystems. Conservation Biology 10(4):1163-1174. https://doi.org/10.1046/j.1523-1739.1996.10041163.x.

Richter, B., J. Baumgartner, R. Wigington, and D. Braun. 1997. How much water does a river need? Freshwater Biology 37(1):231-249. https://doi.org/10.1046/j.1365-2427.1997.00153.x.

Richter, B. D., J. V. Baumgartner, D. P. Braun, and J. A. Powell. 1998. spatial assessment of hydrologic alteration within a river network. Regul Rivers Res Manag 14:329-340. https://doi.org/10.1002/(SICI)1099-1646(199807/08)14:4%3C329::AID-RRR505%3E3.0.CO;2-E.

Rodrigues Capítulo, L., P. Laurencena, J. M. García, N. Gómez, and E. Kruse. 2021. Aplicación de nuevas técnicas en la caracterización de humedales relacionados con el agua subterránea. Boletín Geológico y Minero 132(1):7-14. ISSN: 0366-0176. https://doi.org/10.21701/bolgeomin.132.1-2.001.

Rolls, R. J., B. C. Chessman, J. Heino, B. Wolfenden, I. O. Growns, K. J. Cheshire, and G. L. Butler. 2021. Consequences of hydrological alteration for beta diversity of fish assemblages at multiple spatial scales. Science of the Total Environment 798:149170. https://doi.org/10.1016/j.scitotenv.2021.149170.

Acuña, M. R. 2020. ¿Qué pasa en las islas? Jóvenes y experiencias formativas en contexto de pandemia y bajante del río Paraná. Millcayac 7(13):367-388.

Rosenberg, D. M., P. McCully, and C. M. Pringle. 2000. Global-scale environmental effects of hydrological alterations: introduction. BioScience 50(9):746-751. https://doi.org/10.1641/0006-3568(2000)050[0746:GSEEOH]2.0.CO;2.

Silveira, L. A., and L. G. Silveira. 2003. Vazões mínimas. En Hidrología Aplicada a gestão de pequenas bacias hidrográficas. Ed. Associacão Brasileira de recursos Hídricos. Brasil.

Singh, N. K., and N. B. Basu. 2022. The human factor in seasonal streamflows across natural and managed watersheds of North America. Nature Sustainability 1-9.

Steffen, W., P. J. Crutzen, and J. R. McNeill. 2007. The Anthropocene: are humans now overwhelming the great forces of nature. Ambio-Journal of Human Environment Research and Management 36(8):614-621.

Swift, C. H. 1975. Estimation of stream discharges preferred by steelhead trout for spawning and rearing in western Washington. Open File Report. Series No. 75-155. https://doi.org/10.3133/ofr75155.

Tharme, R. E. 2003. A global perspective on environmental flow assessment: emerging trends in the development and application of environmental flow methodologies for rivers. River Research and Applications 19(5‐6):397-441. https://doi.org/10.1002/rra.736.

The Nature Conservancy. 2009. Indicators of Hydrologic Alteration, Version 7.1 User’s Manual. Pp. 76. URL: conserveonline.org/workspaces/iha.

Umpiérrez, O. 2016. Análisis de impactos hidrológicos de "El Niño". Compilación, estudios e investigación.

Vélez Flórez, A. J. 2009. Propuesta metodológica para la evaluación y cuantificación de la alteración del régimen de caudales de corrientes alteradas antrópicamente, caso Urrá I. Escuela de Geociencias y Medio Ambiente.

Zalasiewicz, J., M. Williams, A. Smith, T. L. Barry, A. L. Coe, P. R. Bown, P. Brenchley, D. Cantrill, A. Gale, P. Gibbard, F. J. Gregory, M. W. Hounslow, A. C. Kerr, P. Pearson, R. Knox, J. Powell, C. Waters, J. Marshall, M. Oates, P. Rawson, and P. Stone. 2008. Are we now living in the Anthropocene? Gsa Today 18(2):4. https://doi.org/10.1130/GSAT01802A.1.

Zeiringer, B., C. Seliger, F. Greimel, and S. Schmutz. 2018. River hydrology, flow alteration, and environmental flow. Pp. 67-89 en Riverine Ecosystem Management. Springer, Cham. https://doi.org/10.1007/978-3-319-73250-3_4.

Zhang, Q., X. Gu, V. P. Singh, and X. Chen. 2015. Evaluation of ecological instream flow using multiple ecological indicators with consideration of hydrological alterations. Journal of Hydrology 529:711-722. https://doi.org/10.1016/j.jhydrol.2015.08.066.

Zhang, W., Y. Jia, J. Ge, X. Huang, G. Ni, J. Hou, and H. Wang. 2019. Multi-index data dimension reduction approach and its applicability in the calculation of indicators of hydrological alteration. Hydrology Research 50(1):231-243. https://doi.org/10.2166/nh.2018.068.

Zhang, Y. K., and K. E. Schilling. 2006. Increasing streamflow and baseflow in Mississippi River since the 1940s: Effect of land use change. Journal of Hydrology 324(1-4):412-422. https://doi.org/10.1016/j.jhydrol.2005.09.033.

Zimmerman, J. K. H. 2010. Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshw Biol 55:194-205. https://doi.org/10.1111/j.1365-2427.2009.02272.x.

Zolezzi, G., A. Bellin, M. C. Bruno, B. Maiolini, and A. Siviglia. 2009. Assessing hydrological alterations at multiple temporal scales: Adige River, Italy. Water Resour Res 45(12):W12421. https://doi.org/10.1029/2008WR007266.

Bases para estudiar las alteraciones del régimen hidrológico y su importancia ecológica en la Argentina

Descargas

Publicado

2022-06-10

Cómo citar

Rodrigues Capítulo, L., Espínola, L., Yoya, F., Gaspari, F., Mazzucchelli, G., & Kruse, E. (2022). Bases para estudiar las alteraciones del régimen hidrológico y su importancia ecológica en la Argentina. Ecología Austral, 32(1-bis), 273–296. https://doi.org/10.25260/EA.22.32.1.1.1219