La influencia de las agallas de Ditylenchus (Nematoda) y la sombra en la asimetría fluctuante de Miconia fallax (Melastomataceae)
Palabras clave:
efecto de borde, exposición a la luz, planta pionera, CerradoResumen
La asimetría fluctuante (AF) se refiere a las pequeñas desviaciones al azar en la simetría bilateral de las estructuras y órganos que son bilateralmente simétricos, y permite estimar la incapacidad de una población cualquiera para corregir su crecimiento de acuerdo con disturbios y tensiones ambientales. Una consideración importante en los estudios de la AF es si los factores bióticos también pueden causar estrés en la planta. Por lo tanto, el objetivo de este estudio fue investigar la influencia conjunta de factores abióticos (exposición solar) y bióticos (presencia de agallas de Ditylenchus sp.) en la asimetría de las hojas de Miconia fallax. Las agallas de las hojas son parásitos, y como M. fallax es una planta pionera, los individuos que se encuentran en la sombra pueden presentar niveles altos de AF en comparación con los de los bordes, expuestos a la luz solar directa. El análisis no mostró ninguna interacción entre la abundancia de agallas, la exposición al sol y AF. El análisis separado reveló que los individuos a la sombra tenían niveles más altos de la AF, aproximadamente 25% más alto que los individuos en los bordes, lo cual muestra que los individuos de M. fallax con poca luz se encuentran en condiciones de estrés. La presencia de agallas no causó ningún cambio o aumento de la AF en comparación con las hojas sin agallas. La falta de relación entre la presencia de agallas y AF indica que los individuos de M. fallax tienen una gran capacidad para mantener la homeostasis, ya que la planta ha tolerado estos parásitos sin cambios significativos en la AF de las hojas.
Citas
CORNELISSEN, T & P STILING. 2005. Perfect is best: low leaf fluctuating asymmetry reduces herbivory by leaf miners. Oecologia 142:46-56.
CORNELISSEN, T & P STILING. 2010. Small variations over large scales: fluctuating asymmetry over the range of two oak species. Int. J. Plant Sci. 171:303-309.
CORNELISSEN, T & P STILING. 2011. Similar responses of insect herbivores to leaf fluctuating asymmetry. Arthropod-Plant Inte. 5:59-69.
COWART, NM & JH GRAHAM. 1999. Within and among-individual variation in fluctuating asymmetry of leaves in the fig (Ficus carica L.). Int. J. Plant Sci. 160:116-121.
CROW, WT & RA DUNN. 2005. Introduction to plant nematology. Fact Sheet ENY-016 (NG006). Florida Nematode Management Guide from the Department of Entomology and Nematology, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
CUEVAS-REYES, P; K OYAMA; A GONZÁLEZ-RODRÍGUEZ; GW FERNANDES & L MENDOZA-CUENCA. 2011. Contrasting herbivory patterns and leaf fluctuating asymmetry in Heliocarpus pallidus between different habitat types within a Mexican tropical dry forest. J. Trop. Ecol. 27:383-391.
DALLING, JW; K WINTER; JD NASON; SP HUBBELL; DA MURAWSKI; ET AL. 2001. The unusual life history of Alseis blackiana: a shade-persistent pioneer tree? Ecology 82:933-945.
DALLING, JW & SP HUBBELL. 2002. Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. J. Ecol. 90:557-568.
DEBAT, V & P DAVID. 2001. Mapping phenotypes: canalization, plasticity and developmental stability. Trends Ecol. Evol. 16:555-561.
ESPÍRITO-SANTO, MM & GW FERNANDES. 2007. How many species of gall-inducing insects are there on Earth, and where are they? Ann. Entomol. Soc. Am. 100:95-99.
FARNSWORTH, EJ & ME AARON. 1996. Sun-shade adaptability of the red mangrove, Rhizophora mangle (Rhizophoraceae): changes through ontogeny at several levels of biological organization. Am. J. Bot. 83:1131-1143.
FERNANDES, GW & PW PRICE. 1992. The adaptative significance of insect gall distribution: survivorship of species in xeric and mesic habitats. Oecologia 90:14-20.
GEHLHAUSEN, SM; MW SCHWARTZ & CK AUGSPURGER. 2000. Vegetation and microclimatic edge effects in two mixed- mesophytic forest fragments. Plant Ecol. 147:21-35.
GORDON, DM; KA GREY; SC CHASE & CJ SIMPSON. 1994. Changes to the structure and productivity of a Posidonia sinuosa meadow during and after imposed shading. Aquat. Bot. 47:265-275.
HARPER, KA; SE MACDONALD; PJ BURTON; J CHEN; KD BROSOFSKE; ET AL. 2005. Edge influence on forest structure and composition in fragmented landscapes. Conserv. Biol. 19:768-782.
HÓDAR, JA. 2002. Leaf fluctuating asymmetry of Holm oak in response to drought under contrasting climatic conditions. J. Arid. Environ. 52:233-243.
HUSSEY, RS. 1989. Disease-inducing secretions of plant- parasitic nematodes. Annu. Rev. Phytopathol. 27:123-141.
KOZLOV, MV; BJ WILSEY; J KORICHEVA & E HAUKIOJA. 1996. Fluctuating asymmetry of Birch leaves increases under pollution impact. J. Appl. Ecol. 33:1489-1495.
LEE, DW; RA BONE; SL TARSIS & D STORCH. 1990. Correlates of leaf optical properties in tropical forest sun and extreme-shade plants. Am. J. Bot. 77:370-380.
LENTZ, KA & DF CIPOLLINI JR. 1998. Effect of light and simulated herbivory on growth of endangered northeastern bulrush, Scirpus ancistrochaetus Schuyler.
Plant Ecol. 139:125-131.
LOMÔNACO, C & E GERMANOS. 2001. Variações fenotípicas em Musca domestica L. (Diptera: Muscidae) em resposta à competição larval por alimento. Neotrop. Entomol. 30:223-231.
MARKOW, TA. 1995. Evolutionary ecology and developmental instability. Annu. Rev. Entomol. 40:105-120.
MARUYAMA, PK; E ALVES-SILVA & C MELO. 2007. Oferta qualitativa e quantitativa de frutos em espécies ornitocóricas do gênero Miconia (Melastomataceae). Rev. Bras. Bioc. 5:672-674.
MATLACK, GR. 1994. Vegetation dynamics of the forest edge - trends in space and successional time. J. Ecol. 82:113-123.
MILANEZ, CRD & SR MACHADO. 2011. SEM studies on the leaf indumentum of six Melastomataceae species from Brazilian Cerrado. Rodriguésia 62:203-212.
MØLLER, AP & A POMIANKOWSKI. 1993. Fluctuating asymmetry and sexual selection. Genetica 89:267-279.
MØLLER, AP. 1995. Leaf-mining insects and fluctuating asymmetry in elm Ulmus glabra leaves. J. Anim. Ecol. 64:697-707.
MØLLER, AP. 1996. Parasitism and developmental instability of hosts: a review. Oikos 77:189-196.
MØLLER, AP. 1997. Developmental stability and fitness: a review. Am. Nat. 149:916-932.
MØLLER, AP & JP SWADDLE. 1997. Asymmetry, Developmental Stability and Evolution. Oxford University Press.
OLOFSSON, J & J STRENGBOM. 2000. Response of galling invertebrates on Salix lanata to reindeer herbivory. Oikos 91:493-498.
PALMER, AR & C STROBECK. 1986. Fluctuating asymmetry: measurement, analysis, patterns. Annu. Rev. Ecol. Syst. 17:391-421.
PEARSON, TRH; D BURSLEM; RE GOERIZ & JW DALLING. 2003. Interactions of gap size and herbivory on establishment, growth and survival of three species of neotropical pioneer trees. J. Ecol. 91:785-796.
PRICE, WP; WF FERNANDES & G WARING. 1987. Adaptative nature of insect galls. Environ. Entomol. 16:15-24.
PUERTA-PIÑERO, C; JM GÓMEZ & JA HÓDAR. 2008. Shade and herbivory induce fluctuating asymmetry in a mediterranean oak. Int. J. Plant Sci. 169:631-635.
SANTOS, JC; CVV MAGALHÃES; CIR SANTOS; JE CARES & JS ALMEIDA-CORTEZ. 2009. Impact of nematode-induced galls on Miconia prasina (Melastomataceae) traits in Atlantic forest of northeastern Brazil. Pp. 1-4. in: Anais do III Congresso Latino Americano de Ecologia. São Lourenço, MG, Brazil. Sociedade de Ecologia do Brasil.
SEIXAS, CDS; RW BARRETO; LG FREITAS; LA MAYA & FT MONTEIRO. 2004a. Ditylenchus drepanocercus (Nematoda), a potential biological control agent for Miconia calvescens (Melastomataceae): host-specificity and epidemiology. Biol. Control. 31:29-37.
SEIXAS, CDS; RW BARRETO; LG FREITAS; FT MONTEIRO & RDL OLIVEIRA. 2004b. Ditylenchus drepanocercus rediscovered in the neotropics causing angular leaf spots on Miconia calvescens. J. Nematol. 36:481-486.
TSCHARNTKE, T. 1989. Attack by a stem-boring moth increases susceptibility of Phragmites australis to gall-making by a midge: mechanisms and effects on midge population dynamics. Oikos 54:93-100.
VAN HINSBERG, A & P VAN TIENDEREN. 1997. Variation in growth form in relation to spectral light quality (red/ far-red ratio) in Plantago lanceolata L. in sun and shade populations Oecologia 111:452-459.
WEIS, AE & A KAPELINSKI. 1894. Manipulation of host plant development by the gall-midge Rhabdophaga strobiloides. Ecol. Entomol. 9:457-465.
WHITE, TCR. 1984. The abundance of invertebrate herbivores in relation to the availability of nitrogen in stressed food plants. Oecologia 63:90-105.
WILSEY, BJ; E HAUKIOJA; J KORICHEVA & M SULKINOJA. 1998. Leaf fluctuating asymmetry increases with hybridization and elevation in tree-line birches. Ecology 79:2092- 2099.
WOODS, RE; MJ HERCUS & AA HOFFMANN. 1998. Estimating the heritability of fluctuating asymmetry in field Drosophila. Evolution 52:816-824.
ZAR, JH. 1984. Biostatistical analysis. 2nd edn. Englewood Cliffs: Prentice-Hall.
ZVEREVA, EL; MV KOZLOV; P NIEMELÄ & E HAUKIOJA. 1997a. Delayed induced resistance and increase in leaf fluctuating asymmetry as responses of Salix borealis to insect herbivory. Oecologia 109:368-373.
ZVEREVA, EL; MV KOZLOV & E HAUKIOJA. 1997b. Stress responses of Salix borealis to pollution and defoliation. J. Appl. Ecol. 34:1387-1396.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2020 Estevão Alves-Silva
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Las/os autoras/es conservan sus derechos de autoras/es: 1) cediendo a la revista el derecho a su primera publicación, y 2) registrando el artículo publicado con una Licencia de Atribución de Creative Commons (CC-BY 4.0), lo que permite a autoras/es y terceros verlo y utilizarlo siempre que mencionen claramente su origen (cita o referencia incluyendo autoría y primera publicación en esta revista). Las/os autores/as pueden hacer otros acuerdos de distribución no exclusiva siempre que indiquen con claridad su origen, así como compartir y divulgar ampliamente la versión publicada de su trabajo.