Economía del agua de especies arbustivas de las Estepas Patagónicas

Autores/as

  • Sandra J. Bucci Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Departamento de Biología, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
  • Fabián G. Scholz Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Departamento de Biología, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
  • Patricia A. Iogna Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Grupo de Estudios Biofísicos y Ecofisiológicos (GEBEF), Departamento de Biología, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
  • Guillermo Goldstein Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Laboratorio de Ecología Funcional (LEF), Departamento de Ecología, Genética y Evolución, FCEyN, Universidad de Buenos Aires, Buenos Aires, ArgentinaDepartment of Biology, University of Miami, Coral Gables, P.O Box 249118, Florida, USA

Palabras clave:

Contenido de agua del suelo, densidad de madera, Distrito Occidental de la Patagonia, eficiencia hidráulica, potencial hídrico del suelo y foliar, profundidad de sistemas radicales

Resumen

La vegetación de la estepa patagónica está expuesta a una baja disponibilidad de agua y nutrientes, a bajas temperaturas, y elevadas velocidades y frecuencia de vientos. Estos factores físicos determinan la estructura y el funcionamiento del ecosistema y las características morfo-fisiológicas de sus especies. En esta revisión se presenta información ya publicada y nuevos resultados del efecto de la dinámica espacio-temporal del agua del suelo, sobre el estado hídrico, y características de la arquitectura hidráulica de 10 especies arbustivas dominantes que abarcan un rango de profundidades de enraizamiento desde los 50 cm hasta más de 200 cm. La dinámica del agua del suelo indica la existencia de un aumento de la disponibilidad de agua con la profundidad y un aumento durante el invierno. Las especies leñosas cuyas raíces acceden a fuentes de agua más estables, como Schinus johnstonii Barkley y Berberis heterophylla Jussieu Lam, tienen potenciales hídricos foliares mínimos menos negativos, pero sus sistemas de transporte de agua son menos eficientes (menor conductividad hidráulica específica) que las especies con sistemas radicales más superficiales, como Senecio filaginoides De Candolle y Mulinum spinosum (Cav.) Pers. Las características hidráulicas de las especies con raíces profundas y el acceso a horizontes más húmedos del suelo podrían limitar la velocidad de respuesta de estas especies a los pulsos de lluvia que ocurren durante el verano. A pesar de que la eficiencia de uso de agua tanto intrínseca como integrada en el tiempo y la tasas de fotosíntesis por unidad de biomasa tienden a ser mayores en las especies con raíces profundas y con mayor disponibilidad de agua, su menor capacidad de almacenamiento de agua, mayor densidad de madera y los elevados gradientes de potencial hídrico entre el suelo y las hojas sugieren que estas especies tendrían tasas de crecimiento bajas pero mantenidas por un período mayor a lo largo del año. Se presentan algunas preguntas para estudios adicionales, como por ejemplo por qué las plantas con sistemas radicales profundos no hacen un mayor uso del agua disponible en profundidad.

Citas

AGUIAR, MR; A SORIANO; OE SALA. 1992. Competition and facilitation in the recruitment of seedlings in Patagonian steppe. Funct Ecol., 6:66–70.

AGUIAR, MR & OE SALA. 1994. Competition, facilitation, seed distribution and the origin of patches in a Patagonian steppe. Oikos, 70:26–34.

AGUIAR, MR & OE SALA. 1999. Patch structure, dynamics and implications for functioning of arid ecosystems. Trends Ecol. Evol., 14:273–277.

ARMAS, C; FI PUIGNAIRE; OE SALA. 2008. Patch structure dynamics and mechanisms of cyclical succession in a Patagonian steppe, Argentina. J. Arid Environ., 72:1552-1561.

BERTILLER, MB; MP IRISARRI; ER BREVEDAN; P ZAIXSO. 1996. The establishment of Festuca pallescens in arid grasslands in Patagonia (Argentina): the effect of soil water stress. J. Arid Environ., 32:161-171.

BERTILLER, MB; CL SAIN; AL CARRERA; DN VARGAS. 2005. Patterns of nitrogen and phosphorous conservation in dominant perennial grasses and shrubs across an aridity gradient in Patagonia. J. Arid Environ., 62:209–223.

BUCCI, SJ; G GOLDSTEIN; FC MEINZER; FG SCHOLZ; AC FRANCO; M BUSTAMANTE M. 2004a. Functional convergence in hydraulic architecture and water relations of savanna trees: from leaf to whole plant. Tree Physiol., 24:891–899.

BUCCI, SJ; FG SCHOLZ; G GOLDSTEIN; FC MEINZER; JA HINOJOSA ET AL. 2004b. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species. Tree Physiol., 24:1119-1127.

BUCCI, SJ; G GOLDSTEIN; FC MEINZER; AC FRANCO; P CAMPANELLO; FG SCHOLZ. 2005. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plants in Neotropical savanna trees. Trees, 19:296–304.

BUCCI, SJ; FG SCHOLZ; G GOLDSTEIN; FC MEINZER; AC FRANCO; PI CAMPANELLO; R VILLALOBOS-VEGA; M BUSTAMANTE; F MIRALLES-WILHELM. 2006. Nutrient availability constrains the hydraulic architecture and water relations of savanna trees. Plant Cell Environ., 29:2153-2167.

BUCCI, SJ; FG SCHOLZ; G GOLDSTEIN; FC MEINZER; ME ARCE. 2009. Soil water availability as determinant of the hydraulic architecture in Patagonian woody species. Oecologia, 160:631-641.

BURGESS, SSO; MA ADAMS; NC TURNER; CK ONG. 1998. The redistribution of soil water by tree root systems. Oecologia, 115:306-311.

CAMPANELLO, PI; MG GATTI; G GOLDSTEIN. 2008. Coordination between water transport efficiency and photosynthetic capacity in canopy trees at different growth irradiances. Tree Physiol., 28: 85-94.

CANADELL, J; RB JACKSON; JR EHLERINGER; HA MOONEY;OE SALA; E-D SCHULZE. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia, 108:583–595.

CANNON, WA. 1911. The Root Habits of Desert Plants. Washington, DC: Carnegie Institution of Washington. Publication Number 131. 96pp.

CHESSON, P; RLE GEBAUER; S SCHWINNING; N HUNTLY; K WIEGAND ET AL. 2004. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia, 141: 236–253.

CIPRIOTTI, PA; P FLOMBAUM; OE SALA; MR AGUIAR. 2008. Does drought control emergence and survival of grass seedlings in semi-arid rangelands? An example with a Patagonian species. J. Arid Environ., 72:162–174.

CORNET, AF; JP DELHOUME; AC MONTAN. 1988. Dynamics of striped vegetation pattern and water balance in the Chihuahuan desert. In: Diversity and Pattern in Plant Communities. During, H.J., Werger, M.J.A., Willems, J.H. (Eds.). SPB Academic, The Hague, The Netherlands, pp. 221–231.

CORONATO, FR & MB BERTILLER. 1997. Climatic controls of soil moisture dynamics in an arid steppe of northern Patagonia, Argentina. Arid Soil Res Rehab., 11:277–2

DAMASCOS, MA; D BARTHELEMYB; C EZCURRA; AP MARTÝNEZ; AC BRION. 2008. Plant phenology, shoot growth, and branching pattern in Mulinum spinosum (Apiaceae), a cushion shrub of the arid Patagonian steppe of Argentina. J. Arid Environ., 72:1977–1988.

DAWSON, TE. 1993. Hydraulic lift and water use by plants: implications for water balance, performance and plant-plant interactions. Oecologia, 95:565–574.

DONOVAN, LA; DJ GRISÉ; JB WEST; RA PAPPORT; NN ALDER; JH RICHARDS. 1999. Predawn disequilibrium between plant and soil water potentials in two cold-desert shrubs. Oecologia, 120:209–217.

DONOVAN, LA; MJ LINTON; JH RICHARDS. 2001. Predawn plant water potential does not necessarily equilibrate with soil water potential under well-watered conditions. Oecologia, 129:328–335.

DONOVAN, LA; JH RICHARDS; MJ LINTON. 2003. Magnitude and mechanisms of disequilibrium between predawn plant and soil water potentials. Ecology, 84:463–470.

DURANTE, M; PH MASEDA; RJ FERNÁNDEZ. 2011. Xylem efficiency vs. safety: Acclimation to drought of seedling root anatomy for six Patagonian shrub species. J. Arid Environ., doi:10.1016/j.jaridenv.2010.12.001

FERNANDEZ, RJ & JM PARUELO. 1988. Root systems of two Patagonian shrubs a quantitative description using a geometrical method. J. Range Manage., 41: 220–223.

FERNANDEZ, RJ; OE SALA; RA GOLLUSCIO. 1991.Woody and herbaceous aboveground production of a Patagonian steppe. J. Range Manage., 44:434–437.

FERNÁNDEZ, RJ; AH NUÑEZ; A SORIANO. 1992. Contrasting demography of two Patagonian shrubs under different conditions fo sheep grazing and resource supply. Oecologia, 91:39-46.

FERNANDEZ, RJ & JM PARUELO. 1992. Root systems of two Patagonian shrubs: a quantitative description using a geometrical method. J. Range Manage., 41:220-223.

FERNANDEZ, RJ. 2007. On the frequent lack of response of plants to rainfall events in arid areas. J. Arid Environ., 68:688–691.

FRANK, PJ; PL DRAKE; RH FROEND. 2007. Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ., 30:19-30.

FRAVOLINI, A; KR HULTINE; E BRUGNOLI; R GAZAL; NB ENGLISH; DG WILLIAMS. 2005. Precipitation pulse use by an invasive woody legume: the role of soil texture and pulse size. Oecologia, 144:618-627.

GOLDSTEIN, G; JL ANDRADE; FC MEINZER; NM HOLBROOK; J CAVELIER; P JACKSON; A CELIS. 1998. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant Cell, Environ., 21:397–406.

GOLLUSCIO, RA; RJC LEON; SB PERELMAN. 1982. Caracterización fitosociologica de la estepa del oeste del Chubut. Su relación con el gradiente ambiental. Bol. Soc. Argent. Bot., 21:299–324.

GOLLUSCIO, RA & OE SALA. 1993. Plant functional types and ecological strategies in Patagonian forbs. J. Veg. Sc., 4:839–846.

GOLLUSCIO, RA; OE SALA; WK LAUENROTH. 1998. Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia, 115:17-25.

GOLLUSCIO, RA; M OESTERHELD; MR AGUIAR. 2005. Phenology of twenty five Patagonian species related to their life form. Ecography, 28:273–282.

GOLLUSCIO, RA & M OESTERHELD. 2007. Water use efficiency of twenty-five co-existing Patagonian species growing under different soil water availability. Oecologia, 154:207-217.

GOLLUSCIO, RA; V SIGAL ESCALADA; J PEREZ. 2009. Minimal Plant Responsiveness to Summer Water Pulses: Ecophysiological constraints of three species of semiarid Patagonia rangeland. Ecol Manage., 62:171–178.

HERZOG, KM; R THUM; G KRONFUB; H-J HELDSTAB; R HASLER. 1998. Patterns and mechanisms of transpiration in a large subalpine Norway spruce (Picea abies (L.) Karst.). Ecol Res., 13:105–116.

HOLBROOK, NM & TR SINCLAIR. 1992. Water balance in the arborescent palm, Sabal palmetto. II. Transpiration and stem water storage. Plant Cell Environ., 15:401–409.

HOWARD, AR & LA DONOVAN. 2007. Helianthus nighttime conductance and transpiration respond to soil water but not nutrient availability. Plant Physiol., 143:145–155.

HUBBART, JA; KL KAVANAGH; R PANGLE; T LINK; A SCHOTZKO. 2007. Cold air drainage and modeled nocturnal leaf water potential in complex forested terrain. Tree Physiol., 27:631–639.

IOGNA, PA; SJ BUCCI; FG SCHOLZ; G GOLDSTEIN . 2011. Water relations and hydraulic architecture of two Patagonian steppe shrubs: effect of slope orientation and microclimate. J. Arid Environ., (aceptado).

JACKSON, RB; J CANADELL; J EHLERINGER; HA MOONEY; OE SALA; ET AL. 1996. A global analysis of root distribution for terrestrial biomes. Oecologia, 108: 389–411.

JACOBSEN, AL; RB PRATT; SD DAVIS; FW EWERS. 2007. Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. Plant Cell & Environ., 30:1599- 1609.

JAMES, JJ; NN ALDER; KH MUHLING; AE LAUCHLI; KA SHACKEL ET AL.2006. High apoplastic solute concentrations in leaves alter water relations of the halophytic shrub, Sarcobatus vermiculatus J. Exp. Bot., 57:139–147.

JOBBAGY, EG; OE SALA; JM PARUELO. 2002. Patterns and controls of primary production in the steppe: a remote sensing approach. Ecology, 83:307–319.

KAVANAGH, KL; R PANGLE; A SCHOTZKO. 2007. Nocturnal transpiration causing disequilibrium between soil and stem predawn water potential in mixed conifer forests of Idaho. Tree Physiol., 27:621-627.

KOWALJOW, E & RJ FERNÁNDEZ. 2011 Differential utilization of a shallow-water pulse by six shrub species in the Patagonian steppe J. Arid Environ., 75:211-214.

KRÖPFL, AI; GA CECCHI; NM VILLASUSO; RA DISTEL. 2002. The influence of Larrea divaricata on soil moisture and on water status and growth of Stipa tenuis in southern Argentina. J. Arid Environ., 52: 29-35.

LAUENROTH, WK & OE SALA. 1992. Long-term forage production of North American shortgrass steppe. Ecol. Appl., 2:397-403.

LAUENROTH, WK; OE SALA; DP COFFIN; TB KIRCHNER. 1994. Recruitment of Bouteloua gracilis in the shortgrass steppe: a simulation analysis of the role of soil water. Ecol Appl., 4:741-749.

LUDWIG F; RA JEWITT; LA DONOVAN LA. 2006. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual. Oecologia, 148:219–225.

MARKLE, MS. 1917. Root systems of certain desert plants. Bot Gaz., 64:177–205.

MASEDA, PH & RJ FERNÁNDEZ. 2006. Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J. Exp. Bot., 57:3963-3977.

MCCULLEY, RL; EG JOBBAGGY; WT POCKMAN; RB JACKSON. 2004. Nutrient uptake as a contributing explanation for deep rooting in arid and semi-arid ecosystems. Oecologia, 141:620–628.

MEINZER, FC; G GOLDSTEIN; AC FRANCO; M BUSTAMANTE; E IGLER ET AL. 1999. Atmospheric and hydraulic limitations on transpiration in Brazilian cerrado woody species. Funct Ecol., 13:273–282.

MOORE, GW; JR CLEVERLY; M OWENS. 2008. Nocturnal transpiration in riparian Tamarix thickets authenticated by sap flux, eddy covariance and leaf gas exchange measurements. Tree Physiol., 28:521–528.

MOREIRA, MZ; FG SCHOLZ; SJ BUCCI; LS STERNBERG; G GOLDSTEIN; FC MEINZER; AC FRANCO. 2003. Hydraulic lift in a Neotropical savanna. Funct Ecol., 17:573–581.

NOY-MEIR, I. 1973. Desert ecosystems: Environment and producers. Ann Rev Ecol Syst., 4:25-52.

PARUELO, JM; MR AGUIAR; RA GOLLUSCIO. 1988. Soil water availability in the Patagonian arid steppe: gravel content effect. Arid Soil Res. Rehab., 2:67-74.

PARUELO, JM & OE SALA. 1995. Water losses in the Patagonian steppe: a modeling approach. Ecology, 76:510-520.

PARUELO, JM; EG JOBBAGY; OE SALA; WK LAUENROTH; IC BURKE. 1998. Functional and structural convergence of temperate grassland and shrubland ecosystems. Ecol Appl., 8:194–206.

PRATT, RB & RA BLACK. 2006. Do invasive trees have a hydraulic advantage over native trees? Biological Invasions, 8:1331–1341.

REICH, PB; DS ELLSWORTH; MB WALTERS; JM VOSE; C. GRESHAM ET AL. 1999. Generality of leaf trait relationships: a test across six biomes. Ecology, 80:1955–1969.

RODRIGUEZ, MV. 2008. Estructura y funcionamiento de los sistemas radicales en los ecosistemas áridos. Patrones de distribución y funcionamiento radical en el Monte austral. Tesis doctoral. Universidad Nacional del Comahue. Argentina.

RUNDEL, PW & PS NOBEL. 1991. Structure and function in desert root systems. In: Plant Root Growth: An Ecological Perspective Atkinson, D. (Ed.),London, UK: Blackwell Scientific Publications. 478 pp.

SALA, OE; WK LAUENROTH; WJ PARTON WJ; MJ TRLICA MJ. 1981. Water status of soil and vegetation in a short grass steppe. Oecologia, 48:327–331.

SALA, OE & WK LAUENROTH. 1982. Small rainfall events: an ecological role in semiarid regions. Oecologia, 53:301–304.

SALA, OE; RA GOLLUSCIO; WK LAUENROTH; A SORIANO. 1989. Resource partitioning between shrubs and grasses in the Patagonian steppe. Oecologia, 81:501-505.

SALA, OE; WK LAUENROTH; WJ PARTON. 1992. Long term soil water dynamics in the shortgrass steppe. Ecology, 73:1175–81.

SANTIAGO, LS; G GOLDSTEIN; FC MEINZER; JB FISHER; K MACHADO; ET AL. 2004. Leaf photosynthetic traits scale with hydraulic conductivity and wood density in Panamanian forest canopy trees. Oecologia, 140:543–550.

SCHENK, HJ & RB JACKSON. 2002a. Rooting depths, lateral root spreads, and belowground/aboveground allometries of plants in water-limited ecosystems. J. Ecol., 90:480– 494.

SCHENK, HJ & RB JACKSON. 2002b. The global biogeography of roots. Ecol. Monogr., 72:311–328.

SCHENK, HJ. 2005. Vertical Vegetation Structure Below Ground: Scaling from Root to Globe. Progress in Botany, Vol. 66.

SCHOLZ, FG; SJ BUCCI; G GOLDSTEIN; FC MEINZER; AC FRANCO; F MIRALLES-WELHEIM. 2006. Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees. Tree Physiol., 27:551–559.

SCHOLZ, FG; SJ BUCCI; G GOLDSTEIN; FC MEINZER; FC FRANCO; F MIRALLES-WILHELM. 2007. Biophysical properties and functional significance of stem water storage tissues in neo-tropical savanna trees. Plant Cell Environ., 30:236–248.

SCHOLZ, FG; SJ BUCCI; G GOLDSTEIN; MZ MOREIRA; FC MEINZER; J-C DOMEC; R VILLALOBOS; FC FRANCO; F MIRALLES-WILHELM. 2008. Biophysical and life history determinants of hydraulic lift in Neotropical savanna trees. Funct. Ecol., 22:773-786.

SCHULZE, ED; HA MOONEY; OE SALA; E JOBBAGY; N BUCHMANN ET AL. 1996. Rooting depth, water availability and vegetation cover along an aridity gradient in Patagonia. Oecologia, 108:503-511.

SCHWINNING, S & OE SALA. 2004. Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia, 141:211–220.

SORIANO, A. 1956. Los Distritos Florísticos de la Provincia Patagónica. Revista de Investigaciones Agropecuarias, 10:323-347.

SORIANO, A & OE SALA. 1983. Ecological strategies in a Patagonian arid steppe. Vegetatio, 56:9-15.

SORIANO, A & OE SALA. 1986. Emergence and survival of Bromus setifolius seedlings in different microsites of the Patagonian arid steppe. Isr. J. Bot., 35:91–100.

SORIANO, A; RA GOLLUSCIO; EH SATORRE. 1987. Spatial heterogeneity of root systems of grasses in the Patagonian steppe. Bull. Torrey Bot. Club, 114:103-108.

SORIANO, A. 1990. Missing strategies for water capture in the Patagonian semidesert. Acad nat Cienc Ex Fis Nat Buenos Aires Monogr., 5:135-139.

STRATTON, L; G GOLDSTEIN; FC MEINZER. 2000. Stem water storage capacity and efficiency of water transport: their functional significance in a Hawaiian dry forest. Plant, Cell Environ., 23:99-106.

TARDIEU, F & T SIMONNEAU. 1998. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modeling isohydric and anisohydric behaviors. J. Exp. Bot., 49:419-432.

YAHDJIAN, L & OE SALA. 2006. Vegetation structure constrains primary production response to water availability in the Patagonian steppe. Ecology, 87: 952–962.

WALTER, H. 1971. Ecology of tropical and subtropical vegetation. Oliver and Boyd, Edinburgh.

WARING, RH & RUNNING SW. 1978. Sapwood water storage: its contribution to transpiration and effect upon water conductance through the stems of old-growth Douglas-fir. Plant Cell Environ., 1:131-140.

WILLIAMS, DG & JR EHLERINGER. 2000. Intra- and interspecific variation for summer precipitation use in pinyon juniper woodlands. Ecol Monogr., 70:517–537.

WRIGHT, IJ & M WESTOBY. 2002. Leaves at low versus high rainfall: coordination of structure, lifespan and physiology. New Phytol., 155:403–416.

Descargas

Publicado

2011-04-01

Cómo citar

Bucci, S. J., Scholz, F. G., Iogna, P. A., & Goldstein, G. (2011). Economía del agua de especies arbustivas de las Estepas Patagónicas. Ecología Austral, 21(1), 043–060. Recuperado a partir de https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1295

Número

Sección

Sección Especial