La cobertura de semillas y los períodos de sequía en la temporada de lluvias interfieren con el éxito de la siembra directa en la restauración de áreas mineras en las sabanas tropicales
DOI:
https://doi.org/10.25260/EA.21.31.3.0.1446Palabras clave:
técnicas de restauración activa, germinación, recuperación de minas, masa de semillas, tierra vegetalResumen
Entre las limitaciones para el uso de la siembra directa en la restauración ecológica de áreas severamente degradadas en las sabanas tropicales se destaca la asociación entre períodos de sequía y el sustrato inhóspito. En este trabajo se evaluó si la cobertura de las semillas por una capa de suelo y si la adición de una fina capa de tierra vegetal (topsoil) al sustrato degradado interfieren con el establecimiento de las plantas nativas en un área degradada. También se midió cómo las variaciones en las precipitaciones afectan los resultados de la siembra directa durante el período de estudio. Se evaluó el establecimiento de plántulas de siete especies nativas bajo cuatro condiciones diferentes: 1) sembradas sobre sustrato degradado, 2) cubiertas por una capa de 1 cm del sustrato degradado, 3) sembradas sobre una capa de tierra vegetal (topsoil) de 1 cm, y 4) cubiertas por una capa de 1 cm de tierra vegetal. En general, las especies con semillas más pequeñas mostraron mayores porcentajes de establecimiento en los tratamientos en que las semillas se depositaron sobre el sustrato. Las leguminosas, que tienen semillas más grandes, lograron mejores porcentajes de establecimiento cuando sus semillas estaban cubiertas por el sustrato. La adición de tierra vegetal fue beneficiosa para Bulbostylis fimbriata —Cyperaceae—, mientras que para las otras especies no tuvo ningún efecto o fue perjudicial. Los datos también mostraron que la cantidad y distribución de la lluvia afecta los porcentajes de establecimiento. La siembra directa es una alternativa ventajosa para la restauración ecológica de áreas degradadas en las sabanas tropicales. Incrementar el conocimiento del manejo de la siembra y el comportamiento de las especies nativas puede contribuir a mejorar la eficiencia de esta técnica
Citas
Alem, S. 2018. Seed bury vs. broadcast in direct seeding: their effects on the germination of different woody plant species, in a degraded semi-arid area, Southern Ethiopia. Journal of Degraded and Mining Lands Management 5:2502-2458. https://doi.org/10.15243/jdmlm.2020.072.2041.
Álvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. M. Gonçalves, and G. Sparovek. 2014. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift 22:711-728. https://doi.org/10.1127/0941-2948/2013/0507.
Araújo, G. M., E. L. Araújo, K. A. Silva, E. M. N. F Ramos, F. V. A. Leite, and R. M. M. Pimentel. 2007. Resposta germinativa de plantas leguminosas da Caatinga. Revista de Geografia 24:136-153.
Assad, E. D., E. E. Sano, R. Masutomo, L. H. R. de Castro, and F. A. M. da Silva. 1993. Veranicos na região dos cerrados Brasileiros Frequência e probabilidade de ocorrência. Pesquisa Agropecuária Brasileira 28:993-1003.
Bertacchi, M. I. F, N. T. Amazonas, P. H. S. Brancalion, G. E. Brondani, A. C. S. Oliveira, M. A. R. Pascoa, and R. R. Rodrigues. 2016. Establishment of tree seedlings in the understory of restoration plantations: natural regeneration and enrichment plantings. Restoration Ecology 24:100-108. https://doi.org/10.1111/rec.12290.
Bond, W. J., M. Honig, and K. E. Maze 1999. Seed size and seedling emergence: An allometric relationship and some ecological implications. Oecologia 120:132-136. https://doi.org/10.1007/s004420050841.
BRASIL - Ministério da Agricultura Pecuária e Abastecimento. 2009. Regras para análise de sementes. MAPA/ACS, Brasília, Distrito Federal, Brasil.
Carmo, C. A. F. de S., W. S. Araújo, A. C. de C. Bernardi, and M. F. C. Saldanha. 2000. Métodos de análises de tecidos vegetais utilizados na Embrapa Solos. Embrapa, Rio de Janeiro, Rio de Janeiro, Brasil.
Castro, J. M. G., F. G., Sobreira, R. C. Gomes, and G. J. C. Gomes. 2012. Proposição de procedimento preventivo de riscos geológicos em Ouro Preto - BR com base em histórico de ocorrências e sua correlação com a pluviosidade. Revista Brasileira de Geociências 42:58-66. https://doi.org/10.25249/0375-7536.20124215866.
Ceccon, E., E. J. González, and C. Martorell. 2016. Is direct seeding a biologically viable strategy for restoring forest ecosystems? Evidences from a meta-analysis. Land Degradation and Development 520:511-520. https://doi.org/10.1002/ldr.2421.
Cole, R. J., K. D. Holl, C. L. Keene, and R. A. Zahawi. 2011. Direct seeding of late-successional trees to restore tropical montane forest. Forest Ecology Management 261:1590-1597 https://doi.org/10.1016/j.foreco.2010.06.038.
Coutinho, A. G., M. Alves, A. B. Sampaio, I. B. Schmidt, and D. L. M. Vieira. 2019. Effects of initial functional-group composition on assembly trajectory in savanna restoration. Applied Vegetation Science 22:61-70. https://doi.org/10.1111/avsc.12420.
Dayrell, R. L. C., Q. S. Garcia, D. Negreiros, C. C. Baskin, J. M. Baskin, and F. A. O. Silveira. 2017. Phylogeny strongly drives seed dormancy and quality in a climatically buffered hotspot for plant endemism. Annals Botany 119:67-277. https://doi.org/10.1093/aob/mcw163.
Doust, S. J. 2011. Seed removal and predation as factors affecting seed availability of tree species in degraded habitats and restoration plantings in rainforest areas of Queensland, Australia. Restoration Ecology 19:617-626. https://doi.org/10.1111/j.1526-100X.2010.00681.x.
Doust, S. J., P. D. Erskine, and D. Lamb. 2006. Direct seeding to restore rainforest species: Microsite effects on the early establishment and growth of rainforest tree seedlings on degraded land in the wet tropics of Australia. Forest Ecology Management 234:333-343. https://doi.org/10.1016/j.foreco.2006.07.014.
Engelbrecht, B. M. J., J. W. Dalling, T. R. H. Pearson, R. L. Wolf, D. A. Gálvez, T. Koehler, M. T. Tyree, and T. A. Kursar. 2006. Short dry spells in the wet season increase mortality of tropical pioneer seedlings. Oecologia 148:258-269. https://doi.org/10.1007/s00442-006-0368-5.
Figueiredo, M. A., A. P. Diniz, A. T. Abreu, M. C. T. B. Messias, and A. R. Kozovits. 2018. Growing Periandra mediterranea on post-mining substrate: Native Fabaceae with potential for revegetation of degraded rupestrian grasslands in Brazil. Acta Botanica Brasilica 32:232-239. https://doi.org/10.1590/0102-33062017abb0381.
Figueiredo, M. A., H. E. Baêta, A. R. Kozovits. 2012. Germination of native grasses with potential application in the recovery of degraded areas in Quadrilátero Ferrífero, Brasil. Biota Neotropica 12: 118-123. http://dx.doi.org/10.1590/S1676-06032012000300013.
Figueiredo, M. A., M. C. T. B. Messias, M. G. P. Leite, A. R. Kozovits. 2021. Direct seeding in the restoration of post-mined campo rupestre: germination and establishment of 14 native species. Flora 276:1-9. https://doi.org/10.1016/j.flora.2021.151772.
Figueiredo, M. A., M. G. P. Leite, and A. R. Kozovits. 2016. Influence of soil texture on nutrients and potentially hazardous elements in Eremanthus erythropappus. International Journal of Phytoremediation 18:487-493. https://doi.org/10.1080/15226514.2015.1115961.
Fontenele, H. G. V., R. N. A. Figueirôa, C. M. Pereira, C. Musso, and H. S. Miranda. 2020. Protected from fire, but not from harm: seedling emergence of savanna grasses is constrained by burial depth. Plant Ecology and Diversity 13:189-198. https://doi.org/10.1080/17550874.2020.1729889.
Funes, G., S. Díaz, and P. Verner. 2009. La temperatura como principal determinante de la germinación en especies del Chaco seco de Argentina. Ecología Austral 19:129-138.
Garcia-Orth, X., and M. Martínez-Ramos. 2008. Seed dynamics of early and late successional tree species in tropical abandoned pastures: Seed burial as a way of evading predation. Restoration Ecology 16:435-443. https://doi.org/10.1111/j.1526-100X.2007.00320.x.
Grossnickle, S., and V. Ivetić. 2017. Direct seeding in reforestation - a field performance review. Reforesta 4:94-142. https://doi.org/10.21750/refor.4.07.46.
Groves, A. M., and L. A. Brudvig. 2019. Interannual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities. Restoration Ecology 27:128-137. https://doi.org/10.1111/rec.12708.
Kildisheva, O., K. Dixon, F. Silveira, T. Chapman, A. Di Sacco, A. Mondoni, S. Turner, and A. Cross. 2020. Dormancy and germination: making every seed count in restoration. Restoration Ecology 28:S256-265. https://doi.org/10.1111/rec.13140.
Kirmer, A., A. Baasch, and S. Tischew. 2012. Sowing of low and high diversity seed mixtures in ecological restoration of surface mined-land. Applied Vegetation Science 15:198-207. https://doi.org/10.1111/j.1654-109X.2011.01156.x.
Le Stradic, S., E. Buisson, and G. W. Fernandes. 2014. Restoration of neotropical grasslands degraded by quarrying using hay transfer. Applied Vegetation Science 17:1-11. https://doi.org/10.1111/avsc.12074.
Le Stradic, S., G. W. Fernandes, and E. Buisson. 2018. No recovery of campo rupestre grasslands after gravel extraction: implications for conservation and restoration. Restoration Ecology 26:151-159. https://doi.org/10.1111/rec.12713.
Limón, Á., and B. Peco. 2016. Germination and emergence of annual species and burial depth: Implications for restoration ecology. Acta Oecologica 1:8-13. https://doi.org/10.1016/j.actao.2016.01.001.
Machado, N. A. de M., M. G. P. Leite, M. A. Figueiredo, and A. R. Kozovits. 2013. Growing Eremanthus erythropappus in crushed laterite: A promising alternative to topsoil for bauxite-mine revegetation. J Environment Management 29:149-156. https://doi.org/10.1016/j.jenvman.2013.07.006.
Madsen, M. D., K. W. Davies, C. S. Boyd, J. D. Kerby, and T. J. Svejcar. 2016. Emerging seed enhancement technologies for overcoming barriers to restoration. Restoration Ecology 24:77-84. https://doi.org/10.1111/rec.12332.
Manning, G., and S. G. Baer. 2018. Interannual variability in climate effects on community assembly and ecosystem functioning in restored prairie. Ecosphere 9:02327. https://doi.org/10.1002/ecs2.2327.
Milberg, P., L. Andersson, and K. Thompson. 2000. Large-seeded spices are less dependent on light for germination than small-seeded ones. Seed Science Research 10:99-104. https://doi.org/10.1017/S0960258500000118.
Negreros-Castillo, P., L. K. Snook, and C. W. Mize. 2003. Regenerating mahogany (Swietenia macrophylla) from seed in Quintana Roo, Mexico: The effects of sowing method and clearing treatment. Forest Ecology Management 183:351-362. https://doi.org/10.1016/S0378-1127(03)00143-9.
Nunes, F. P., R. L. C. Dayrell, F. A. O. Silveira, D. Negreiros, D. G. Santana, F. J. Carvalho, Q. S. Garcia, and G. W. Fernandes. 2016. Seed germination ecology in Rupestrian Grasslands. Pp. 207-225 in G. W. Fernandes (ed.). Ecology and conservation of mountaintop grasslands in Brazil. Springer, Switzerland. https://doi.org/10.1007/978-3-319-29808-5_10.
Oki, Y., B. T. Goto, K. Jobim, L. H. Rosa, M. C. Ferreira, E. S. Coutinho, J. H. de A. Xavier, F. Carvalho, F. M. S. Moreira, F. A. Sousa, R. L. L. Berbara, and G. W. Fernandes. 2016. Arbuscular mycorrhiza and endophytic fungi in Ruspestrian Grasslands. Pp. 157-180 in G. W. Fernandes (ed.). Ecology and conservation of mountaintop grasslands in Brazil. Springer, Switzerland.
Palma, A. C., and S. G. W. Laurance. 2015. A review of the use of direct seeding and seedling plantings in restoration: What do we know and where should we go? Applied Vegetation Science 18:561-568. https://doi.org/10.1111/avsc.12173.
Passaretti, R. A., N. A. L. Pilon, and G. Durigan. 2020. Weed control, large seeds and deep roots: Drivers of success in direct seeding for savanna restoration. Applied Vegetation Science 23:406-416. https://doi.org/10.1111/avsc.12495.
Pellizzaro, K. F., A. O. O. Cordeiro, M. Alves, C. P. Motta, G. M. Rezende, R. R. P. Silva, J. F. Ribeiro, A. B. Sampaio, D. L. M. Vieira, and I. B. Schmidt. 2017. Cerrado restoration by direct seeding: field establishment and initial growth of 75 trees, shrubs and grass species. Brazilian Journal of Botany. 40:681-693. https://doi.org/10.1007/s40415-017-0371-6.
Raupp, P. P., M. C. Ferreira, M. Alves, E. M. Campos-Filho, P. A. R. Sartorelli, H. N. Consolaro, and D. L. M. Vieira. 2020. Direct seeding reduces the costs of tree planting for forest and savanna restoration. Ecological Engineering 148:105788. https://doi.org/10.1016/j.ecoleng.2020.105788.
Sampaio, A. B., D. L. M. Vieira, K. D. Holl, K. F. Pellizzaro, M. Alves, A. G. Coutinho, A. Cordeiro, J. F. Ribeiro, and I. B. Schmidt. 2019. Lessons on direct seeding to restore Neotropical savanna. Ecological Engineering 138:148-154. https://doi.org/10.1016/j.ecoleng.2019.07.025.
Silva, R. R. P., and D. L. M. Vieira. 2017. Direct seeding of 16 Brazilian savanna trees: responses to seed burial, mulching and an invasive grass. Applied Vegetation Science 20:410-421. https://doi.org/10.1111/ avsc.12305.
Silveira, F. A. O., D. Negreiros, N. P. U. Barbosa, et al. 2016. Ecology and evolution of plant diversity in the endangered campo rupestre : a neglected conservation priority. Plant and soil 403:129-152. https://doi.org/10.1007/s11104-015-2637-8.
Sovu, P. S., M. M. Tibagu, and P. C. Odén. 2010. Restoration of former grazing lands in the highlands of Laos using direct seeding of four native tree species. Mountain Research and Development 30:232-243. https://doi.org/10.1659/MRD-JOURNAL-D-10-00031.1.
Stuble, K. L., S. E. Fick, and T. P. Young.2017. Every restoration is unique: testing year effects and site effects as drivers of initial restoration trajectories. Journal Applied Ecology 54:1051-1057. https://doi.org/10.1111/1365-2664.12861.
Teixeira, P. C., G. K. Donagemma, A. Fontana, and W. G. Teixeira. 2017. Manual de métodos de análise de solo, terceira edição. EMBRAPA, Brasília, Distrito Federal, Brasil.
Traba, J., F. M. Azcárate, and B. Peco. 2004. From what depth do seeds emerge? A soil seed bank experiment with Mediterranean grassland species. Seed Science Research 14:297-303. https://doi.org/10.1079/ssr2004179.
Vieira, D. L. M., and A. Scariot. 2006. Principles of natural regeneration of tropical dry forests for restoration. Restoration Ecology 14:11-20. https://doi.org/10.1111/j.1526-100X.2006.00100.x.
Voorde, T. F. J., W. H. Putten, and T. M. Bezemer. 2012. Soil inoculation method determines the strength of plant e soil interactions. Soil Biology and Biochemistry 55:1-6. https://doi.org/10.1016/j.soilbio.2012.05.020.
Wang, N., J. Y. Jiao, D. Lei, Y. Chen, and D. L. Wang. 2014. Effect of rainfall erosion: Seedling damage and establishment problems. Land Degradation and Development 25:565-572. https://doi.org/10.1002/ldr.2183.
Westoby, M., E. Jurado, and M. Leishman. 1992. Comparative evolutionary ecology of seed size. Trends in Ecology and Evolution 7:368-372. https://doi.org/10.1016/0169-5347(92)90006-W.
Woods, K., and S. Elliott. 2004. Direct seeding for forest restoration and abandoned agricultural land in northern Thailand. Journal of Tropical Forest Science 16:248-259. https://www.jstor.org/stable/23616517.
Wubs, E. R. J., W. H. Van Der Putten, M. Bosch, and T. M. Bezemer. 2016. Soil inoculation steers restoration of terrestrial Ecosystems. Nature Plants 2(8):1-5. https://doi.org/10.1038/NPLANTS.2016.107.
Descargas
Archivos adicionales
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Maurílio Assis Figueiredo, Maria C. Teixeira Braga Messias, Mariangela Garcia Praça Leite, Alessandra Rodrigues Kozovits
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Las/os autoras/es conservan sus derechos de autoras/es: 1) cediendo a la revista el derecho a su primera publicación, y 2) registrando el artículo publicado con una Licencia de Atribución de Creative Commons (CC-BY 4.0), lo que permite a autoras/es y terceros verlo y utilizarlo siempre que mencionen claramente su origen (cita o referencia incluyendo autoría y primera publicación en esta revista). Las/os autores/as pueden hacer otros acuerdos de distribución no exclusiva siempre que indiquen con claridad su origen, así como compartir y divulgar ampliamente la versión publicada de su trabajo.