Inferencia estadística de la evolución correlacionada entre variables macroecológicas utilizando la regresión de autovalores filogenéticos


  • José A. F. Diniz-Filho Departamento de Biologia Geral, Instituto de Ciencias Biológicas, Universidade Federal de Goiás. Cx. P. 131, 74.001-970, Goiânia, GO, Brasil.
  • Alexandre S. G. Coelho Departamento de Biologia Geral, Instituto de Ciencias Biológicas, Universidade Federal de Goiás. Cx. P. 131, 74.001-970, Goiânia, GO, Brasil. Programa de Pós-Graduaço em Genética e Melhoramento de Plantas, ESALQIUSP, Brasil.
  • Carlos E. R. de Sant’Ana Centro Federal de Educação Tecnológica de Goiás, CEFET-GO, Laboratório de Biologia, Rua 75, n. 46, 74.055-110, Goiânia, GO, Brasil. Programa de Pós-Graduação em Biologia Animal, Universidade de Brasilia, Brasil.


In this paper, a recently developed method for comparative data analysis, called phylogenetic eigenvector regression (PVR), was applied to macroecological data of five groups of mammals and birds from South America. In these data sets, the relationship between geographic range size and body length was functional or generated a constraint envelope in the bivariate space, in which minimum geographic range size increased with body length. Using the PVR, eigenvectors were extracted from the double-centered phylogenetic distance matrix, derived from phylogenies based on different sources. These eigenvectors were used as predictors in a multiple regression in which the response variables were body length and geographic range size. Body size usually displayed significant phylogenetic inertia, measured by the coefficient of determination (R2) of the PVR regression model. The partial correlation between these two variables, after controlling for phylogenetic eigenvectors, varied in the different groups. Only for the primate data set, with 50 species, the correlation disappeared after controlling phylogenetic inertia in both variables. For the owl data set (29 species), the constraint envelope was transformed in a significant functional relationship after using the PVR. One thousand simulations assuming a Brownian motion pattern of phenotypic evolution, with a parametric correlation of input equal to zero, permitted to calculate the true Type I error of the method at 5% as being around 10% for most data sets. This was considered to be satisfactory in comparison with other methods, specially with the non phylogenetic standard correlation (TIPS). Power curves of PVR were also estimated for all data sets, using 5000 simulations with input correlations ranging from 0.20 to 0.95, and indicated a relatively low statistical power when samples sizes are smaller than 25 species. In general, the PVR method works fine with macroecological data and the results supported the importance of controlling for phylogenetic patterns before using ecological or evolutionary mechanisms to explain geographic range size - body size relationships.


Blackburn, T.M. and K. Gaston. 1998. Some methodologicalissues in macroecology. Am. Nat. 151:68-83.

Brown, J.H. 1995. Macroecology. University of ChicagoPress, Chicago, USA. 269 pp.

Brown, J.H. 1999. Macroecology: progress and prospect. Oikos 87: 3-14.

Brown, J.H. and B.A. Maurer. 1987. Evolution of species assemblages: effects of energetic constraints and species dynamics on the diversification of North American avifauna. Am. Nat. 130:1-17.

Brown,J.H. andB.A.Maurer. 1989. Macroecology:the division offood and space among species on continents. Science 243:1145-1150.

Butler, M.A., T.W. Schoener and J.B. Losos. 2000. The relationship between sexual size dimorphism and habitat use in greater antillean Anolislizards. Evolution 54:259-292.

Cheverud, J.M., M.M. Dowand W. Leutenegger. 1985.The quantitative assessement of phylogenetic constraints in comparative analyses:sexual dimorphism in body weight among primates. Evolution 39:1335-1351.

Díaz-Uriarte, R. and T. Garland Jr. 1996. Testing hypotheses of correlated evolution using phylogenetically independent contrasts:sensitivity to deviationsfrom Brownian motion. Syst. Biol. 45:27-47.

Diniz-Filho, J. .A.F. and C.M Vieira. 1998.Padrões e processos na evolução do tamanho do corpo emcarnívoros (Mammalia) da America doSul. Rev. Bras. Biol. 58:649-657.

Diniz-Filho,J.A.F., C.E.R.Sant’Ana and L.M.Bini. 1998. An eigenvectormethod for estimating phylogenetic inertia. Evolution 52:1247-1262.

Diniz-Filho,J.A.F.,S.Fuchs and M.C. Arias. 1999. Phylogeographical autocorrelation of phenotypic evolution in honey bees(Apis mellifera L.). Heredity 83:671-680.

Dunning, J. S. 1987. South American Birds. Harrowood Books, Newtown Square, Pennsylvania. 351 pp.

Eisenberg,J.F. 1989.Mammals oftheNeotropics.University ofChicagoPress,Chicago,USA. 449 pp. Emmons, L.H. 1997. Neotropical rainforest mammals: a field guide. 2nd Ed. University of ChicagoPress, Chicago, USA. 281 pp.

Felsenstein,J. 1985.Phylogenies and the comparative method. Am. Nat. 125:1-15

Fonseca, G.A.B., G. Herrmann, Y.L.R. Leite, R.A. Mittermeier, A.B. Rylands and J.L. Patton. 1996. Lista anotada dos mamíferos do Brasil. Occas. Papers Cons. Biol. Conservation International & Fundacdo Biodiversitas, Brazil. 38 pp.

Garland Jr., T., P.H. Harvey and A.R. Ives. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts.Syst.Biol. 41:18-32.

Gaston, K.J. and T.M. Blackburn. 1996a. Range size-body size relationships: evidence of scale dependence. Oikos 75:479-485.

Gaston, K.J. and T.M. Blackburn. 1996b. Global scale macroecology: interactions between population size, geographic range size and body size in the Anseriformes.J. Anim. Ecol. 65:701-714.

Gittleman,J.L. and H-K. Luh. 1992. On comparing comparative methods. Ann. Rev. Ecol.Syst. 23:383-404.

Gittleman, J.L. and M. Kot. 1990. Adaptation: statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39:227-241.

Gittleman, J.L., C.G. Anderson, M. Kot & H-K. Luh. 1996. Phylogenetic lability and rates of evolution: a comparison of behavioral,morphological and life-history traits.Pp. 166-205. In: Martins, E.P. Phylogenies and the comparative method in animal behavior. Oxford UniversityPress, Oxford, U. K.

Hansen, T.F. 1997.Stabilizing selection and the comparative analysis of adaptation. Evolution 51:1341-1351.

Hansen, T.F. and E.P. Martins. 1996. Translating between microevolutionary process and macroevolutionary patterns:the correlation structure of interspecific data. Evolution 50:1404-1417.

Harvey,P.H. and M.D.Pagel. 1992. TheComparative Method in EvolutionaryBiology.Cambridge University Press, Cambridge, U.K. 239 pp.

Jones,J.A., A.W. Dickerman and T. Garland. 1993. PDAP: Phenotypic diversity analysis program. University of Wisconsin, Madison, USA (Distributed by the authors). 27 pp.

Letcher, A.J. and P.H. Harvey. 1994. Variation in geographical range size among mammals of the Paleartic. Am. Nat. 144:30-42.

Losos, J.B. 1999. Uncertain in the reconstruction of ancestral character states and limitations on the use of Phylogenetic comparative methods. Anim.Behav. 58:1319-1324.

Luckett,W.P. andS.L.Hartenberg. 1986. Evolutionary relationships among rodents: amultidisciplinary approach. NATO series, New York, USA. 314 pp.

Martins, E.P. 1996. Phylogenies, spatial autoregression and the comparative method: a computer simulation test. Evolution 50:1750-1765.

Martins, E.P. 2000. Adaptation and the comparative method. Trends in Ecol. and Evol. 15:296-299.

Martins, E.P. and T.F. Hansen. 1996. The statistical analysis of interspecific data: a review and evaluation of Phylogenetic comparative methods.Pp. 22-75. In: Martins, E.P.Phylogenies and the comparative method in animal behavior. Oxford UniversityPress, Oxford, U. K.

Martins, E.P. and T. Garland. 1991.Phylogenetic analyses ofthe correlated evolution of continuous characters: a simulation study. Evolution 45:534-557.

Maurer, B. 1999. Untangling ecological complexity. University of ChicagoPress, Chicago, USA. 251 pp.

Murray, B., C.R. Fonseca and M. Westoby. 1998. The macroecology of Australian frogs. J. Anim. Ecol. 67:567- 579.

Purvis, A. 1995. A composite estimate of primate phylogeny.Phil. Trans.RoyalSoc. London,B348:405-421.

Pyron,M. 1999.Relationships between geographicalrange size, body size,local abundance and habitat breadth in North American suckers and sunfishes.J. Biogeogr. 26:549-558.

Redford, K.H. and J.F. Eisenberg. 1992. Mammals of the Neotropics. University of Chicago Press, Chicago, USA. 430 pp.

Ruggiero, A. and J. Lawton. 1998. Are there latitudinal and altitudinal Rapoport effects in the geographic ranges of Andean passerine birds? Biol.J. Linn.Soc. 63:283-304.

Sibley,C.G. and J.E. Ahlquist. 1990.Phylogeny and classification of birds. Yale University Press, New Haven, USA. 976 pp.

Sibley, C.G. and B.L. Monroe. 1990. Distribution and taxonomy of the birds of the world. Yale University Press, New Haven, USA. 1111 pp.

Sibley,C.G. andB.L. Monroe. 1993. A supplementto distribution and taxonomy ofthe birds ofthe world. Yale UniversityPress, New Haven, USA. 312 pp.

Sick, H. 1997. Ornitologia Brasileira. Editora NovaFronteira, Rio de Janeiro, Brazil. 862 pp.

Sneath,P.H.A. and R.R.Sokal. 1973. Numerical Taxonomy. W.H. & Freeman,SanFrancisco, USA. 573 pp. Sokal, R.R. and F.J.Rohlf. 1995. Biometry. 3rd Ed. W. H. Freeman & Co, New York, USA. 881 pp.

Taylor, C.M. and N.J. Gotelli. 1994. The macroecology of Cyprinella: correlates of phylogeny, body size and geographic range. Am. Nat. 144:549-569.

Wayne,R.K.,R.E.Benveniste, D.N.Janczewski andS.J. O’Brien. 1989. Molecular and biochemical evolution of the Carnivora. Pp. 465-493. In: Gittleman, J.L. Carnivore behavior, ecology and evolution. Cornell UniversityPress, Ithaca, USA. 620 pp.

Wayne,R.K., E. Geffen, D.J. Girman, K.P. Koepfli, L.M. Lau andC.R. Marshall. 1997. Molecularsystematics of the Canidae. Syst. Biol. 46:622-653.

Wilson, D.E. and D.M.Reeder. 1993. Mammalspecies ofthe world: a taxonomic and geographic reference. 2nd Ed.Smithsonian Inst.Press, Washington, USA. 1207 pp.




Cómo citar

Diniz-Filho, J. A. F., Coelho, A. S. G., & de Sant’Ana, C. E. R. (2000). Inferencia estadística de la evolución correlacionada entre variables macroecológicas utilizando la regresión de autovalores filogenéticos. Ecología Austral, 10(1), 027–036. Recuperado a partir de