Sobre la violación del principio de exclusión competitiva

Autores/as

  • Mauricio Bellini Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Buenos Aires, Argentina
  • Bernardo Von Haeften Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Buenos Aires, Argentina
  • Roberto Deza Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Buenos Aires, Argentina
  • Horacio Wio Centro Atómico Bariloche e Instituto Balseiro, Universidad Nacional de Cuyo, E. Bustillo 9.500, 8400 Bariloche, Río Negro, Argentina

Resumen

Cuando se incluye dependencia espacial en modelos tipo Lotka-Volterra, el resultado conocido como “principio de exclusión competitiva “ puede dejar de ser válido. En este trabajo mostramos cómo la coexistencia es posible cuando sólo la especie débil tiene la habilidad de seguir con un movimiento de tipo difusivo a un superávit momentáneo de recurso alimentario que se propaga corno una onda en una dirección determinada. Un simple cambio de variables pone al problema en correspondencia con uno de Mecánica Cuántica, lo que permite extraer resultados completamente analíticos en un ejemplo.

Citas

Hassan, S.A., M.N. Kuperman, H.S. Wio y D.H. Zanette. 1993. Evolution of reaction-diffusion patterns in infinite and bounded domains, accepted in Physica A.

Malthus, T.R. 1798. An essay on the principle of population. Peguin Books, 1970.

Mikhailov, A.S. 1981. Effects of diffusion in fluctuating media: a noise-induced phase transition.Z.PhysikB41, 277.

Mikhailov, A.S. 1989.Selected topics in fluctuational kinetics of reactions, Phys. Rep. 184, 308.

Mikhailov, A.S. 1979. Noise-induced phase transition in a biologicalsystem with diffusion), Phys. Lett. 73A, 143.

Muratori, S. y S. Rinaldi. 1989. Remarks on competitive coexistence, SIAM J. Appl. Math. 49, 1462.

Murray, J.D. 1989. Mathematical biology. Springer-Verlag Yasuhiro Takeuchi. Conflict between the nedd to forage and the need to avoid competition: persistence of two-species model Math. Biosci. 181.

Salem, L.D. y R. Montemayor. 1991. A modified Riccati approach to partially solvable quantum Hamiltonians. Phys. Rev. A 43, 1169.

Salem, L.D. 1992. Solvable Models in Quantum Mechanics and their Relation with Algebraic Many Body Model, Ph.D. Thesis, Instituto Balseiro.

Schat, C. y H.S. Wio. 1993. An Exact Analytic Solution of a Three Component Model for Competitive Coexistence. Submitted to Math. Biosc.

Schat, C. 1991. Mathematical aspects of reacting and diffusing systems, M.Sc.Thesis in Physics, Instituto Balseiro.

Takeuchi, Y. 1991. Diffusion-mediated persistence in three-species competition models with heteroclinic cycles Math.. Biosci. 106 111

Takeuchi, Y. 1992.Refuge-mediated global coexistence of multiple competitors on a single resourceWSSIA A 1-531.

Volterra, V. 1927. Variazioni e fluttuazioni del numero d’individui in species animan conviventi R. Comitato Talassografico Italiano Memoria. Pp. 1-142.

Wio, H.S., M.N. Kuperman, B. von Haeften, M. Bellini, R.R. Deza y C. Schat. 1994. Competitive Coexistence in Biological Systems: Exact Analytical Results through a Quantum Mechanical Analogyl ,Kluwer Academic Publishers, The Netherlands (en prensa)

Descargas

Publicado

1996-12-01

Cómo citar

Bellini, M., Von Haeften, B., Deza, R., & Wio, H. (1996). Sobre la violación del principio de exclusión competitiva. Ecología Austral, 6(2), 079–086. Recuperado a partir de https://ojs.ecologiaaustral.com.ar/index.php/Ecologia_Austral/article/view/1650

Número

Sección

Artículos