Influencia de las prácticas agrícolas en los ensambles de macroinvertebrados en la Patagonia (Argentina)
DOI:
https://doi.org/10.25260/EA.22.32.3.0.1758Palabras clave:
invertebrados acuáticos, plaguicidas, fertilizantes, contaminación acuáticaResumen
Las especies acuáticas de las zonas agrícolas suelen estar expuestas a concentraciones de plaguicidas y fertilizantes que pueden afectar a toda la comunidad. El objetivo del estudio fue monitorear la presencia de nutrientes y plaguicidas (organofosforados y carbamatos) y evaluar los efectos sobre la composición de los ensambles de macroinvertebrados en dos sitios del río Neuquén, aguas arriba (UNR) y aguas abajo (DNR) de un área de cultivo intensivo de frutales de pepita. Los parámetros físicoquímicos en las muestras de agua de UNR y DNR no fueron significativamente diferentes, excepto para el nitrato (NO3-). Los plaguicidas analizados estuvieron por debajo de los límites de detección en las muestras de agua y sedimento. Los insectos constituyeron el 52.76% del total de los individuos en UNR y, entre ellos, Ephemeroptera fue el taxón más abundante (n=419). Por otro lado, el 67.67% de los individuos en DNR fueron insectos, y la mayoría de ellos pertenecieron al orden Diptera (n=1156). La abundancia de individuos de Diptera y Ephemeroptera fue significativamente diferente entre los sitios. Además, la variación temporal de la riqueza dentro de cada sitio mostró diferencias significativas (P<0.05). Hubo 15 especies compartidas y el índice de Jaccard basado en la abundancia indicó un 37.8% de similitud taxonómica. En resumen, no se encontraron diferencias significativas en la abundancia y la diversidad entre UNR y DNR. Sin embargo, hubo diferencias en la riqueza y la composición de las taxa, con un bajo porcentaje de similitud entre los sitios. Esto último puede observarse en el análisis de correspondencia canónica, que muestra una relación clara entre las variables ambientales y el patrón de distribución de los ensambles de macroinvertebrados.
Citas
Abell, J. M., D. Özkundakci, D. P. Hamilton, and S. D. Miller. 2011. Relationships between land use and nitrogen and phosphorus in New Zealand lakes. Mar Freshwater Res 62:162-175. https://doi.org/10.1071/MF10180.
AIC. 2012. Monitoreo de Agroquímicos en la Cuenca, ciclo productivo 2006-2012. Autoridad Interjurisdiccional de las Cuencas de los Ríos Limay, Neuquén y Negro. Unidad de Gestión de Calidad del Agua. URL: inta.gov.ar/altovalle/info/biblo/publicaciones.htm.
Alonso, A., and J. Camargo. 2006. Toxicity of nitrite to three species of freshwater invertebrates. Environ Toxicol 21:90-4. https://doi.org/10.1002/tox.20155.
APHA. 1992. Standard methods for the examination of water and wastewater. 18th ed. American Public Health Association, Washington, DC.
Barmentlo, S. H., M. Schrama, E. R. Hunting, R. Heutink, P. M. van Bodegom, et al. 2018. Assessing combined impacts of agrochemicals: Aquatic macroinvertebrate population responses in outdoor mesocosms. Sci. Total Environ 631:341-347. https://doi:10.1016/j.scitotenv.2018.03.021.
Barmentlo, S. H., M. Schrama, M. P. van Bodegom, G. R. de Snoo, C. J. M. Musters, et al. 2019. Neonicotinoids and fertilizers jointly structure naturally assembled freshwater macroinvertebrate communities. Sci Total Environ 691:36-44. https://doi.org/10.1016/j.scitotenv.2019.07.110.
Beketov, M. 2004. Different sensitivity of mayflies (Insecta, Ephemeroptera) to ammonia, nitrite and nitrate: linkage between experimental and observational data. Hydro 528:209-216. https://doi.org/10.1007/s10750-004-2346-4.
Beketov, M. A., and M. Liess. 2008. Potential of 11 Pesticides to Initiate Downstream Drift of Stream Macroinvertebrates. Arch Environ Contam Toxicol 55:247-253. http://doi:10.1007/s00244-007-9104-3.
Beketov, M. A., B. J. Kefford, R. B. Schäfer, and M. Liess. 2013. Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci U S A 110 (27):11039-11043. https://doi.org/10.1073/pnas.1305618110.
Beuter, L. K., L. Dören, U. Hommen, M. Kotthoff, C. Schäfers, et al. 2019. Testing effects of pesticides on macroinvertebrate communities in outdoor stream mesocosms using carbaryl as example test item. Environ Sci Eur 31:5. https://doi.org/10.1186/s12302-019-0185-1.
Bonada, N., N. Prat, V. H. Resh, and B. Statzner. 2006. Developments in aquatic insect biomonitoring: a comparative analysis of recent approaches. Annu Rev Entomol 51:495-523. https://doi.org/10.1146/annurev.ento.51.110104.151124.
Brasil, L. S., L. Juen, and H. S. R. Cabette. 2014. The effects of environmental integrity on the diversity of mayflies, Leptophlebiidae (Ephemeroptera), in tropical streams of the Brazilian Cerrado. Ann Limnol Int J Lim 50:325-334. https://doi.org/10.1051/limn/2014026.
Camargo, J. A., A. Alonso, and M. De La Puente. 2004. Multimetric Assessment of Nutrient Enrichment in Impounded Rivers Based On Benthic Macroinvertebrates. Environ Monit Assess 96:233-249. https://doi.org /10.1023/B:EMAS.0000031730.78630.75.
Castillo, M. M. 2010. Land use and topography as predictors of nutrient levels in a tropical catchment. Limnologica 40:322-329. https://doi.org/10.1016/j.limno.2009.09.003.
Catoira, P. 2017. El Alto Valle rionegrino, entre loteos urbanos, hidrocarburos y manzanas. Pp. 249-268 in M. M. Patrouilleau, W. F. Mioni and C. I. Aranguren (eds.). Políticas públicas en la ruralidad argentina. Ediciones INTA. ISBN 978-987-521-889-5. URL: inta.gob.ar/documentos/politicas-publicas-en-la-ruralidad-argentina.
Chao, A. 1984. Nonparametric Estimation of the Number of Classes in a Population. Scand J Stat 11:265-270.
Chao, A. 1987. Estimating the Population Size for Capture-Recapture Data with Unequal Catchability. Biomet 43:783-791.
Chao, A., and M. C. Ma. 1993. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 89:193-201.
Chao, A., R. L. Chazdon, R. K. Colwell, and T. J. Shen. 2006. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62:361-371.
Cichón, L., L. Araque, and S. A. Garrido. 2013a. Residuos y tolerancias de insecticidas para el control de plagas de frutales de pepita. Instituto Nacional de tecnología agropecuaria [en línea]. 2014-2015. URL: tinyurl.com/3f75x299.
Cichón, L., J. Soleño, O. L. Anguiano, S. A. Garrido, et al. 2013b. Evaluation of Cytochrome P450 Activity in Field Populations of Cydia pomonella (Lepidoptera: Tortricidae) Resistant to Azinphosmethyl, Acetamiprid, and Thiacloprid. J Econ Entomol 106(2):939-944. https://doi.org/doi:10.1603/ec12349.
Cichón, L., L. Araque, S. A. Garrido, and J. Lago. 2015. Residuos y tolerancias de insecticidas para el control de plagas de frutales de pepita. Instituto Nacional de Tecnología Agropecuaria. URL: tinyurl.com/2c6xffpd.
Colwell, R. K., Ch. X. Mao, and J. Chang. 2004. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:2717-2727.
Colwell, R. K. 2013. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. URL: purl.oclc.org/estimate.
Cornejo, A., A. M. Tonin, B. Checa, A. R. Tuñon, D. Pérez, et al. 2019. Effects of multiple stressors associated with agriculture on stream macroinvertebrate communities in a tropical catchment. PLos ONE 14:e0220528. https://doi.org/10.1371/journal.pone.0220528.
Côté, I. M., E. S. Darling, and C. J. Brown. 2016. Interactions among ecosystem stressors and their importance in conservation. Proc R Soc B 283:20152592. https://doi.org/10.1098/rspb.2015.2592.
Domínguez, E., and H. Fernández. 2009. Macroinvertebrados Bentónicos Sudamericanos, Sistemática y Biología. First edición. Fundación Miguel Lillo, Tucumán, Arg. ISBN: 978-950-668-015-2.
Egler, M., D. Buss, J. Moreira, and D. Baptista. 2012. Influence of agricultural land-use and pesticides on benthic macroinvertebrate assemblages in an agricultural river basin in southeast Brazil. Braz J Biol 72:437-443. https://doi.org/10.1590/S1519-69842012000300004.
FAO. 2015. Desarrollo Institucional para la Inversión. Provincia del Neuquén. DT N°2 Aspectos Físicos: Suelo, Clima y Agua. Provincia del Neuquén. Proyecto FAO UTF ARG 017.
Fernández, H., and E. Domínguez. 2001. Guía para la determinación de los artrópodos bentónicos Sudamericanos. First edición. EUdeT. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Tucumán, Arg. ISBN 978-950-554-247-5.
Gafner, K., and C. T. Robinson. 2007. Nutrient enrichment influences the responses of stream macroinvertebrates to disturbance. J North Am Benthol Soc 26:92-102. https://doi:10.1899/0887-3593(2007)26[92:NEITRO]2.0.CO;2.
Galbrand, C., I. G. Lemieux, A. E Ghaly, R. Cote, and M. Verma. 2007. Assessment of Constructed wetlands biological integrity using aquatic macroinvertebrates. J Biol Sci 7:52-65. https://doi.org/10.3844/ojbsci.2007.52.65.
Gärdenäs, A. I., J. Šimůnek, N. Jarvis, and M. T. van Genuchten. 2006. Two-dimensional modelling of preferential water flow and pesticide transport from a tile-drained field. J Hydrol 329:647-660. https://doi.org/10.1016/j.jhydrol.2006.03.021.
Gerth, W. J., J. Li, and G. R. Giannico. 2017. Agricultural land use and macroinvertebrate assemblages in lowland temporary streams of the Willamette Valley, Oregon, USA. Agric Ecosyst Environ 236:154-165. https://doi.org/10.1016/j.agee.2016.11.010.
Golterman, H. L. 1978. Methods for physical and chemical analysis of fresh waters. Second edition. Blackwell Scientific, Oxford. https://doi.org/10.1002/iroh.19800650113.
Hinsby, K., S. Markager, B. Kronvang, J. Windolf, T. O. Sonnenborg, et al. 2012. Threshold values and management options for nutrients in a catchment of a temperate estuary with poor ecological status. Hydrol Earth Syst Sci 16:2663-2683. https://doi.org/10.5194/hessd-9-2157-2012.
Infante, D., J. D. Allan, S. Linke, and R. Norris. 2009. Relationship of fish and macroinvertebrate assemblages to environmental factors: implications for community concordance. Hydrobiologia 623:87-103. https://doi.org/10.1007/s10750-008-9650-3.
Juvigny-Khenafou, N. P. D., J. J. Piggott, D. Atkinson, Y. Zhang, S. J. Macaulay, et al. 2020. Impacts of multiple anthropogenic stressors on stream macroinvertebrate community composition and functional diversity. Ecol Evol 11:133-152.
Khatri, N., and S. Tyagi. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Hydrol Earth Syst Sci 8:23-39. https://doi.org/10.1080/21553769.2014.933716.
King, R. S., and C. J. Richardson. 2007. Subsidy-stress response of macroinvertebrate community biomass to a phosphorus gradient in an oligotrophic wetland ecosystem. J North Am Benthol Soc 26:491-508. https://doi:10.1899/06-002R.1.
Kohlmann, B., A. Arroyo, P. A. Macchi, and R. Palma. 2018. Biodiversity and Biomonitoring Indexes. Pp. 83-106 in B. Maestroni and A. Cannavan (eds.). Integrated Analytical Approaches for Pesticide Management. Elsevier, 1° edition. Academic Press. Vienna, Austria. https://doi.org/10.1016/B978-0-12-816155-5.00006-3.
Kubendran, T., C. Selvakumar, K. S. Avtar, N. Akhil, and M. Krishnan. 2017. Baetidae (Ephemeroptera: Insecta) as Biological Indicators of Environmental Degradation in Tamiraparani and Vaigai River Basins of Southern Western Ghats, India. Int J Curr Microbiol App Sci 6:558-572. https://doi.org/10.20546/ijcmas.2017.606.066.
Labraga, J. C., and R. Villalba. 2009. Climate in the Monte Desert: Past trends, present conditions, and future projections. J Arid Environ 73:154-163. https://doi.org/10.1016/j.jaridenv.2008.03.016.
Lares, B. A. 2014. Análisis de las comunidades de macroinvertebrados en el sistema de riego de un área de producción frutícola y su uso potencial como bioindicadores de calidad de agua expuesta a la aplicación de plaguicidas. Tesis de grado. Facultad de Ciencias del Ambiente y la Salud. Universidad Nacional del Comahue, Neuquén. Argentina. Pp. 71.
Liang, X., S. Zhu, R. Ye, R. Guo, C. Zhu, et al. 2014. Biological thresholds of nitrogen and phosphorus in a typical urban river system of the Yangtz delta, China. Environ Pollut 192:251-258. https://doi.org/10.1016/j.envpol.2014.04.007.
Liess, M., and P. C. Von der Ohe. 2005. Analyzing Effects of Pesticides on Invertebrate Communities in Streams. Environ Toxicol Chem 24(4):954-965. http://doi:10.1897/03-652.1.
Loewy, M., V. Kirs, G. Carvajal, A. Venturino, and A. M. Pechen de D'Angelo. 1999. Groundwater contamination by azinphos methyl in the Northern Patagonic Region (Argentina). Sci Total Environ 225:211-218. https://doi.org/10.1016/s0048-9697(98)00365-9.
Loewy, R. M., L. G. Carvajal, M. Novelli, and A. M. Pechen de D’Angelo. 2003. Effect of pesticide use in fruit production orchards on shallow ground water. J Environ Sci Health B 38:317-325. https://doi.org/10.1081/PFC-120019898.
Loewy, R. M., L. G. Carvajal, M. Novelli, and A. M. de D'Angelo. 2006. Azinphos methyl residues in shallow groundwater from the fruit production region of northern Patagonia, Argentina. J Environ Sci Health B 41:869-881. https://doi.org/10.1080/03601230600805956.
Loewy, R. M., L. B. Monza, V. E. Kirs, and M. C. Savini. 2011. Pesticide distribution in an agricultural environment in Argentina. J Environ Sci Health B 46:662-670. https://doi.org/10.1080/03601234.2012.592051.
Lopretto, E., and G. Tell. 1995. Ecosistemas de Aguas Continentales: Metodologías para su Estudio. First edición. Ediciones Sur. La Plata, Arg. 3 tomos. Revista de la Sociedad Entomológica Argentina. Pp. 1401.
Macchi, P. A., R. M. Loewy, B. A. Lares, L. Latini, L. B. Monza, et al. 2018. The impact of pesticides on the macroinvertebrate community in the water channels of the Rio Negro and Neuquén Valley, North Patagonia (Argentina). Environ Sci Pollut Res Int 1:018-1330. https://doi.org/10.1007/s11356-018-1330-x.
Mackereth, F. J. H. 1979. Water analysis: some revised methods for limnologists. Eighth edition. Freshwater Biological Association. Ambleside, Cumbria. https://doi.org/10.1002/iroh.19790640404.
Maero, E., and O. L. Anguiano. 2018. Efecto de la exposición al insecticida clorantraniliprol sobre biomarcadores de estrés oxidativo en adultos de Cydia pomonella (Lepidoptera: Tortricidae). Revista de la Sociedad Entomológica Argentina 77(1):9-17. ISSN 1851-7471.
Manuel, J. 2014. Nutrient pollution: a persistent threat to waterways. Environ Health Perspect 122:A304. https://doi.org/10.1289/ehp.122-A304.
Marrochi, M. N., L. Hunt, M. Solis, A. M. Scalise, S. L. Fanelli, et al. 2020. Land-use impacts on benthic macroinvertebrate assemblages in Pampean streams (Argentina). J Environ Manage 279:111608. https://doi.org/10.1016/j.jenvman.2020.111608.
Matthaei, C. D., J. J. Piggott, and C. R. Townsend. 2010. Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. J Appl Ecol 47:639-649. https://doi: 10.1111/j.1365-2664.2010.01809.x.
Miserendino, M. L., C. Brand, and C. Y. Di Prinzio. 2008. Assessing Urban Impacts on Water Quality, Benthic Communities and Fish in Streams of the Andes Mountains, Patagonia (Argentina). Water Air Soil Pollut 194:91-110. https://doi.org/10.1007/s11270-008-9701-4.
Osborn, R. 2005. Odonata as indicators of habitat quality at lakes in Louisiana, United States. Odonatologica 34:259-270.
Ossa-López, P. A., N. Prat, G. J. Castaño Villa, E. M. Ospina Pérez, G. T. Rodríguez Rey, et al. 2018. Genus 1 sp. 2 (Diptera: Chironomidae): The Potential Use of its Larvae as Bioindicators. Environ Anal Ecol Studies 4(3):376-385. EAES.000589.
Ouyang, Z., S. S. Qian, R. Becker, and J. Chen. 2018. The effects of nutrients on stream invertebrates: a regional estimation by generalized propensity score. Ecol Processes 7:21. https://doi:10.1186/s13717-018-0132-x.
Overmyer, J. P., R. Noblet, and K. L. Armbrust. 2005. Impacts of lawn-care pesticides on aquatic ecosystems in relation to property value. Environ Pollut 137:263-272. https://doi.org/10.1016/j.envpol.2005.02.006.
Paisley, M. F., W. J. Walley, and D. J. Trigg. 2011. Identification of macro-invertebrate taxa as indicators of nutrient enrichment in rivers. Ecol Inform 6:399-406. http://doi:10.1016/j.ecoinf.2011.09.002.
Phillips, P. J., and R. W. Bode. 2004. Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations. Pest Manag Scie 60:531-543. https://doi.org/10.1002/ps.879.
Piggott, J. J., C. R. Townsend, and C. D. Matthaei. 2015. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics. Glob Change Biol 21(5):1887-1906. https://doi:10.1111/gcb.12861.
Rabalais, N. N. 2002. Nitrogen in aquatic ecosystems. Ambio: A J Human Environ 31:102-112. https://doi.org/10.1579/0044-7447-31.2.102.
Reggiani, O. 2018. Urbanizar lo Productivo. Desequilibrios y Contradicciones. El Peri-Urbano, Ocupación y Usos, En El Territorio Valletano. III Congreso Internacional Vivienda y Ciudad: Debate en torno a la Nueva Agenda Urbana. URL: rid.unrn.edu.ar/handle/20.500.12049/3964.
Rico, A., and P. J. Van den Brink. 2015. Evaluating aquatic invertebrate vulnerability to insecticides based on intrinsic sensitivity, biological traits, and toxic mode of action. Environ Toxicol Chem 34:1907-1917. https://doi.org/10.1002/etc.3008.
Rodrigues-Capítulo, A., and N. Gómez. 2004. Diatomeas y Macroinvertebrados Bentónicos en el Monitoreo de Sistemas Lóticos Bonaerenses. Biología Acuática Nº 21. Instituto De Limnología “Dr. Raúl A. Ringuelet” UNLP - CONICET. ISSN 1668-48698.
Rojas-Peña, J. I., J. M. Vásquez-Ramos, L. G. Salinas-Jiménez, D. P. Osorio-Ramírez, and C. I. Caro-Caro. 2021. Effects of physical and chemical factors on Ephemeroptera (Insecta) assemblages in an urban river of the eastern Colombian Llanos. Pap Avulsos Zool 61:e20216107. http://doi.org/10.11606/1807-0205/2021.61.07.
Sánchez-Bayo, F., K. Goka, and D. Hayasaka. 2016. Contamination of the Aquatic Environment with Neonicotinoids and its Implication for Ecosystems. Frontiers in Environ Scie Vol. 4. https://doi.org/10.3389/fenvs.2016.00071.
Sánchez, V. G., C. A. Gutiérrez, D. S. Gomez, M. Loewy, and N. Guiñazú. 2016. Residuos de plaguicidas organofosforados y carbamatos en aguas subterráneas de bebida en las zonas rurales de Plottier y Senillosa, Patagonia Norte, Argentina Organophosphate and carbamate pesticide residues in drinking groundwater in the rural areas of Plottier and Senillosa, North Patagonia, Argentina. Acta Toxicol Argent 24(1):48-57.
Sánchez, V. G., C. A. Gutiérrez, D. S. Gómez, M. Loewy, and N. Guiñazú. 2019. Pesticide Residues Monitoring in Underground Drinking Water, Neuquén Province, Northern Patagonia, Argentina. Rev Int de Contam Ambient 35(3):641-649. https://doi.org/10.20937/RICA.2019.35.03.10.
Schäfer, R. B., T. Caquet, K. Siimes, R. Mueller, L. Lagadic, et al. 2007. Effects of pesticides on community structure and ecosystem functions in agricultural streams of three biogeographical regions in Europe. Sci Total Environ 382(2-3):272-285. https://doi.org/10.1016/j.scitotenv.2007.04.040.
Schäfer, R. B., P. J. van den Brink, and M. Liess. 2011. Impacts of Pesticides on Freshwater Ecosystems. Pp. 111-137 in F. Sánchez-Bayo, P. J. van den Brink and R. M. Mann (eds.). Ecological Impacts of Toxic Chemicals. Bentham Science Publishers Ltd. https://doi.org/10.2174/97816080512121110101.
Schulz, R., G. Thiere, and J. M. Dabrowski. 2002. A combined microcosm and field approach to evaluate the aquatic toxicity of azinphos-methyl to stream communities. Environ Toxicol Chem 21(10):2172-2178. https://doi.org/10.1002/etc.5620211021.
SENASA. 2016. Resolución 149/16. Servicio Na¬cional de Sanidad y Calidad Agroalimentaria. URL: tinyurl.com/uykczuzk.
SENASA. 2020. Servicio Nacional de Sanidad y Calidad Agroalimentaria. Anuario Estadístico 2020. Centro Regional Patagonia Norte. URL: senasa.gob.ar.
Serra, S. R. Q. 2016. From taxonomy to multiple-trait bioassessment: the role of Chironomidae in separating naturally poor from disturbed communities. Tese de doutoramento. Departamento de Ciencias da Vida da Faculdade de Ciencias e Tecnologia da Universidade de Coimbra. Coimbra. Portugal. Pp. 172. http://hdl.handle.net/10316/31961.
Smith, E. P., and G. van Belle. 1984. Nonparametric Estimation of Species Richness. Biometrics 40:119-129.
Stefanidis, K., Y. Panagopoulos, and M. Mimikou. 2015. Impact assessment of agricultural driven stressors on benthic macroinvertebrates using simulated data. Sci. Total Environ 540:32-42. https://doi.org/10.1016/j.scitotenv.2015.08.015.
ter Braak, C. J. F., and P. Smilauer. 1999. CANOCO for Windows (version 4.02). A Fortran program for canonical community ordination. Centre for biometry Wageningen. Wageningen. The Netherlands.
Thamsenanupap, P., K. Seetapan, and T. Prommi. 2021. Caddisflies (Trichoptera, Insecta) as Bioindicator of Water Quality Assessment in a Small Stream in Northern Thailand. Sains Malays 50(3):655-665. https://doi.org/10.17576/jsm-2021-5003-08.
Thiere, G., and R. Schulz. 2004. Runoff-related agricultural impact in relation to macroinvertebrate communities of the Lourens River, South Africa. Water Res 38(13):3092-3102. https://doi.org/10.1016/j.watres.2004.04.045.
Tosi, A. P., A. M. Pechen de D'Angelo, M. C. Savini, and R. M. Loewy. 2009. Evaluación de riesgo por plaguicidas sobre aguas superficiales de la Región Norpatagónica argentina. Acta Toxicol Argent 17:1-6. ISSN 0327-9286.
Vilenica, M., M. Kerovec, I. Pozojević, and Z. Mihaljević. 2020. Mayfly response to different stress types in small and mid-sized lowland rivers. ZooKeys 980:57-77. https://doi.org/10.3897/zookeys.980.54805.
Villalobos-Jimenez, G., A. M. Dunn, and C. Hassall. 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: A review. Euro J Entomol 113:217-232. https://doi.org/10.14411/eje.2016.027.
Villarreal, P., S. Mattei, M. Villegas Nigra, and G. Forchetti. 2010. Evaluación del impacto del Programa Nacional de Supresión de Carpocapsa en la fruticultura de pepita de los valles irrigados de la Norpatagonia, Viedma. Río Negro, Argentina.
Wagenhoff, A., C. R. Townsend, and C. D. Matthaei. 2012. Macroinvertebrate responses along broad stressor gradients of deposited fine sediment and dissolved nutrients: a stream mesocosm experiment. J Appl Ecol 49:892-902. https://doi:10.1111/j.1365-2664.2012.02162.x.
Wallace, J. B., and J. R. Webster. 1996. The Role of Macroinvertebrates in Stream Ecosystem Function. Annu Rev Entomol 41:115-139. https://doi:10.1146/annurev.en.41.010196.000555.
Yang, X., X. Wu, H. Hao, and Z. He. 2008. Mechanisms and assessment of water eutrophication. Journal of Zhejiang University Sci B 9:197-209. https://doi.org/10.1631/jzus.B0710626.
Zacharia, J. T. 2011. Ecological Effects of Pesticides. Pp. 129-142 in M. Stoytcheva (ed.). Pesticides in the Modern World - Risks and Benefits. 1° edition. In Tech. Rijeka, Croatia. ISBN: 978-953-307-458-0.
Zanetta, V. 2012. Estudio de la situación sanitaria y contaminación de suelos con metabolitos en las pro-ducciones hortícolas del Departamento Confluencia. Final report. Consejo Federal de Inversiones, Neuquén, Argentina. Pp. 111. URL: tinyurl.com/yr47a2rm.
Zhang, Y., L. Chengb, K. E. Tolonen, H. Yin, J. Gao, et al. 2018. Substrate degradation and nutrient enrichment structuring macroinvertebrate assemblages in agriculturally dominated Lake Chaohu Basins, China. Sci Total Environ 627:57-66. https://doi.org/10.1016/j.scitotenv.2018.01.232.
Zhang, Y., J. Y. S. Leung, Y. Zhang, Y. Cai, Z. Zhang, et al. 2021. Agricultural activities compromise ecosystem health and functioning of rivers: Insights from multivariate and multimetric analyses of macroinvertebrate assemblages. Environ Pollut 275:116655. https://doi.org/10.1016/j.envpol.2021.116655.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Betsabé Lares, Laura B. Parra-Morales, Cristina M. Montagna, Josefina Del Brio, Liliana Monza, Pablo Macchi, Hugo Fernández
Esta obra está bajo una licencia Creative Commons Reconocimiento 3.0 Unported.
Las/os autoras/es conservan sus derechos de autoras/es: 1) cediendo a la revista el derecho a su primera publicación, y 2) registrando el artículo publicado con una Licencia de Atribución de Creative Commons (CC-BY 4.0), lo que permite a autoras/es y terceros verlo y utilizarlo siempre que mencionen claramente su origen (cita o referencia incluyendo autoría y primera publicación en esta revista). Las/os autores/as pueden hacer otros acuerdos de distribución no exclusiva siempre que indiquen con claridad su origen, así como compartir y divulgar ampliamente la versión publicada de su trabajo.